toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Perseguers, S.; Lewenstein, M.; Acín, A.; Cirac, J. I. openurl 
  Title Quantum random networks Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 7 Pages 539-543  
  Keywords fromIPMRAS  
  Abstract Quantum mechanics offers new possibilities to process and transmit information. In recent years, algorithms and cryptographic protocols exploiting the superposition principle and the existence of entangled states have been designed. They should allow us to realize communication and computational tasks that outperform any classical strategy. Here we show that quantum mechanics also provides fresh perspectives in the field of random networks. Already the simplest model of a classical random graph changes markedly when extended to the quantum case, where we obtain a distinct behaviour of the critical probabilities at which different subgraphs appear. In particular, in a network of N nodes, any quantum subgraph can be generated by local operations and classical communication if the entanglement between pairs of nodes scales as N-2. This result also opens up new vistas in the domain of quantum networks and their applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 804  
Permanent link to this record
 

 
Author Feofanov, A. K.; Oboznov, V. A.; Bol'Ginov, V. V.; Lisenfeld, J.; Poletto, S.; Ryazanov, V. V.; Rossolenko, A. N.; Khabipov, M.; Balashov, D.; Zorin, A. B.; Dmitriev, P. N.; Koshelets, V. P.; Ustinov, A. V. openurl 
  Title Implementation of superconductor/ferromagnet/ superconductor Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 8 Pages 593-597  
  Keywords fromIPMRAS  
  Abstract High operation speed and low energy consumption may allow the superconducting digital single-flux-quantum circuits to outperform traditional complementary metal-oxide-semiconductor logic. The remaining major obstacle towards high element densities on-chip is a relatively large cell size necessary to hold a magnetic flux quantum Φ0. Inserting a Ï€-type Josephson junction in the cell is equivalent to applying flux Φ0/2 and thus makes it possible to solve this problem. Moreover, using Ï€-junctions in superconducting qubits may help to protect them from noise. Here we demonstrate the operation of three superconducting circuits-two of them are classical and one quantum-that all utilize such Ï€-phase shifters realized using superconductor/ferromagnet/superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a Ï€-biased phase qubit, for which we observe coherent Rabi oscillations. We find no degradation of the measured coherence time compared to that of a reference qubit without a Ï€-junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 805  
Permanent link to this record
 

 
Author Johnson, B. R.; Reed, M. D.; Houck, A. A.; Schuster, D. I.; Bishop, Lev S.; Ginossar, E.; Gambetta, J. M.; Dicarlo, L.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J. openurl 
  Title Quantum non-demolition detection of single microwave photons in a circuit Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 9 Pages 663-667  
  Keywords fromIPMRAS  
  Abstract Thorough control of quantum measurement is key to the development of quantum information technologies. Many measurements are destructive, removing more information from the system than they obtain. Quantum non-demolition (QND) measurements allow repeated measurements that give the same eigenvalue. They could be used for several quantum information processing tasks such as error correction, preparation by measurement and one-way quantum computing. Achieving QND measurements of photons is especially challenging because the detector must be completely transparent to the photons while still acquiring information about them. Recent progress in manipulating microwave photons in superconducting circuits has increased demand for a QND detector that operates in the gigahertz frequency range. Here we demonstrate a QND detection scheme that measures the number of photons inside a high-quality-factor microwave cavity on a chip. This scheme maps a photon number, n, onto a qubit state in a single-shot by means of qubit-photon logic gates. We verify the operation of the device for n=0 and 1 by analysing the average correlations of repeated measurements, and show that it is 90% QND. It differs from previously reported detectors because its sensitivity is strongly selective to chosen photon number states. This scheme could be used to monitor the state of a photon-based memory in a quantum computer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 806  
Permanent link to this record
 

 
Author Haviland, David openurl 
  Title Superconducting circuits: Quantum phase slips Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue Pages 565–566  
  Keywords fromIPMRAS  
  Abstract Coulomb interactions can cause a rapid change in the phase of the wavefunction along a very narrow superconducting system. Such a phase slip at the quantum level is now measured in a chain of Josephson junctions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 807  
Permanent link to this record
 

 
Author Saunders, D. J.; Jones, S. J.; Wiseman, H. M.; Pryde, G. J. openurl 
  Title Experimental EPR-steering using Bell-local states Type Journal Article
  Year 2010 Publication Nat. Phys. Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 11 Pages 845-849  
  Keywords fromIPMRAS  
  Abstract The concept of `steering' was introduced in 1935 by Schrödinger as a generalization of the EPR (Einstein-Podolsky-Rosen) paradox. It has recently been formalized as a quantum-information task with arbitrary bipartite states and measurements, for which the existence of entanglement is necessary but not sufficient. Previous experiments in this area have been restricted to an approach that followed the original EPR argument in considering only two different measurement settings per side. Here we demonstrate experimentally that EPR-steering occurs for mixed entangled states that are Bell local (that is, that cannot possibly demonstrate Bell non-locality). Unlike the case of Bell inequalities, increasing the number of measurement settings beyond two-we use up to six-significantly increases the robustness of the EPR-steering phenomenon to noise.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 808  
Permanent link to this record
 

 
Author Toyabe, Shoichi; Sagawa, Takahiro; Ueda, Masahito; Muneyuki, Eiro; Sano, Masaki openurl 
  Title Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 12 Pages 988-992  
  Keywords fromIPMRAS  
  Abstract In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of “information-heat engine” which converts information to energy by feedback control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 831  
Permanent link to this record
 

 
Author Home, Jonathan openurl 
  Title Quantum entanglement: Watching correlations disappear Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 12 Pages 938-939  
  Keywords fromIPMRAS  
  Abstract Engineered decoherence enables tracking of multipartite entanglement as a quantum state decays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 832  
Permanent link to this record
 

 
Author Saffman, Mark openurl 
  Title Quantum computing: A quantum telecom link Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 11 Pages 838-839  
  Keywords fromIPMRAS  
  Abstract Converting data-carrying photons to telecommunication wavelengths enables distribution of quantum information over long distances.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 833  
Permanent link to this record
 

 
Author Raussendorf, Robert openurl 
  Title Quantum computing: Shaking up ground states Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue 11 Pages 840-841  
  Keywords fromIPMRAS  
  Abstract Measurement-based quantum computation with an Affleck-Kennedy-Lieb-Tasaki state is experimentally realized for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 834  
Permanent link to this record
 

 
Author Buchanan, Mark openurl 
  Title Body of evidence Type Manuscript
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (up) 6 Issue Pages  
  Keywords fromIPMRAS  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 837  
Permanent link to this record
 

 
Author Heeres, R.W.; Dorenbos, S.N.; Koene, B.; Solomon, G.S.; Kouwenhoven, L.P.; Zwiller, V. doi  openurl
  Title On-Chip Single Plasmon Detection Type Journal Article
  Year 2010 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume (up) 10 Issue Pages 661-664  
  Keywords optical antennas; SSPD; Single surface plasmons; superconducting detectors; semiconductor quantum dots; nanophotonics  
  Abstract Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 620  
Permanent link to this record
 

 
Author Stevens, Martin J.; Baek, Burm; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Hamilton, Scott A.; Berggren, Karl K.; Mirin, Richard P.; Nam, Sae Woo openurl 
  Title High-order temporal coherences of
chaotic and laser light Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume (up) 18 Issue 2 Pages 1430-1437  
  Keywords SNSPD  
  Abstract We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 685  
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim openurl 
  Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume (up) 18 Issue 26 Pages 27938-27954  
  Keywords quantum cryptography; QKD; hacking; SPD; APD  
  Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 729  
Permanent link to this record
 

 
Author Yamashita, Taro; Miki, Shigehito; Qiu, Wei; Fujiwara, Mikio; Sasaki, Masahide; Wang, Zhen openurl 
  Title Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region Type Journal Article
  Year 2010 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume (up) 21 Issue 3 Pages 336 - 339  
  Keywords SNSPD  
  Abstract We report on the performance of a fiber-coupled superconducting nanowire single-photon detector (SNSPD) from 4 K down to the ultralow temperature of 16 mK for a 1550 nm wave length. The system detection efficiency (DE) increased with de creasing the temperature and reached the considerably high value of 15% with a dark count rate less than 100 cps below 1.5 K, even without an optical cavity structure. We also observed saturation of the system DE in its bias current dependency at 16 mK, which indicates that the device DE of our SNSPD nearly reached intrinsic DE despite the device having a large active area of 20 μm × 20 μm. The dark count was finite even at 16 mK and the black body radiation becomes its dominant origin in the low temperatures for fiber-coupled devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 656  
Permanent link to this record
 

 
Author Tikhonov, V. V.; Boyarskii, D. A.; Polyakova, O. N.; Dzardanov, A. L.; Goltsman, G. N. url  doi
openurl 
  Title Radiophysical and dielectric properties of ore minerals in 12--145 GHz frequency range Type Journal Article
  Year 2010 Publication PIER B Abbreviated Journal PIER B  
  Volume (up) 25 Issue Pages 349-367  
  Keywords complex permittivity, ore minerals  
  Abstract The paper discusses a retrieval technique of complex permittivity of ore minerals in frequency ranges of 12--38 GHz and 77--145 GHz. The method is based on measuring frequency dependencies of transmissivity and reflectivity of plate-parallel mineral samples. In the 12--38 GHz range, the measurements were conducted using a panoramic standing wave ratio and attenuation meter. In the 77--145 GHz range, frequency dependencies of transmissivity and reflectivity were obtained using millimeter-band spectrometer with backward-wave oscillators. The real and imaginary parts of complex permittivity of a mineral were determined solving an equation system for frequency dependencies of transmissivity and reflectivity of an absorbing layer located between two dielectric media. In the course of the work, minerals that are primary ores in iron, zinc, copper and titanium mining were investigated: magnetite, hematite, sphalerite, chalcopyrite, pyrite, and ilmenite.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 639  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: