toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G. url  doi
openurl 
  Title Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume (up) 151 Issue 1-2 Pages 591-596  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1244  
Permanent link to this record
 

 
Author Chulkova, G.; Milostnaya, I.; Tarkhov, M.; Korneev, A.; Minaeva, O.; Voronov, B.; Divochiy, A.; Gol'tsman, G.; Kitaygorsky, J.; Pan, D.; Sobolewski, R. url  openurl
  Title Superconducting single-photon nanostructured detectors for advanced optical applications Type Conference Article
  Year 2006 Publication Proc. Symposium on Photonics Technologies for 7th Framework Program Abbreviated Journal  
  Volume (up) 400 Issue Pages  
  Keywords SSPD, SNSPD  
  Abstract We present superconducting single-photon detectors (SSPDs) based on NbN thin-film nanostructures and operated at liquid helium temperatures. The SSPDs are made of ultrathin NbN films (2.5-4 nm thick, Tc= 9-11K) as meander-shaped nanowires covering the area of 10× 10 µm2. Our detectors are operated at the temperature well below the critical temperature Tc and are DC biased by a current Ib close to the meander critical current Ic. The operation principle of the detector is based on the use of the resistive region in a narrow ultra-thin superconducting stripe upon the absorption of an incident photon. The developed devices demonstrate high sensitivity and response speed in a broadband range from UV to mid-IR (up to 6 µm), making them very attractive for advanced optical technologies, which require efficient detectors of single quanta and low-density optical radiation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ chulkova2006superconducting Serial 1021  
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. url  openurl
  Title High speed and high efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Miscellaneous
  Year 2012 Publication arXiv Abbreviated Journal arXiv  
  Volume (up) 1108.5299 Issue Pages 1-23  
  Keywords optical waveguides, waveguide SSPD, guantum photonics, jitter, detection efficiency  
  Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. High photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides which allows us to drastically increase the absorption length for incoming photons. When operating the detectors close to the critical current we achieve high on-chip single photon detection efficiency up to 91% at telecom wavelengths, with uncertainty dictated by the variation of the waveguide photon flux. We also observe remarkably low dark count rates without significant compromise of detection efficiency. Furthermore, our detectors are fully embedded in a scalable silicon photonic circuit and provide ultrashort timing jitter of 18ps. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 845  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R. url  doi
openurl 
  Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume (up) 5732 Issue Pages 520-529  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Sensing and Nanophotonic Devices II  
  Notes Approved no  
  Call Number Serial 1478  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Slepneva, S.; Seleznev, V.; Chulkova, G.; Okunev, O.; Smirnov, K.; Voronov, B.; Gol’tsman, G.; Slysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R. url  doi
openurl 
  Title Superconducting nanostructured detectors capable of single photon counting of mid-infrared optical radiation Type Conference Article
  Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume (up) 5957 Issue Pages 59570A (1 to 9)  
  Keywords SSPD, SNSPD, single-photon detectors, superconductors, superconducting  
  Abstract We report on our progress in research and development of ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs were made of the 4-nm-thick NbN films with Tc 11 K, patterned as meander-shaped, 100-nm-wide strips, and covering an area of 10×10 μm2. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, a hotspot of excited electrons and redistribution of the biasing supercurrent, jointly produce a picosecond voltage transient signal across the superconducting nanostripe. The SSPDs are typically operated at 4.2 K, but their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by the optical absorption of our 4-nm-thick NbN film. With the wavelength increase of the incident photons,the QE of SSPDs decreases significantly, but even at the wavelength of 6 μm, the detector is able to count single photons and exhibits QE of about 10-2 %. The dark (false) count rate at 2 K is as low as 2x10-4 s,-1 which makes our detector essentially a background-limited sensor. The very low dark-count rate results in a noise equivalent power (NEP) below 10-18 WHz-1/2 for the mid-infrared range (6 μm). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for another, lower-Tc materials with a narrow superconducting gap and low quasiparticles diffusivity. The use of such superconductors should shift the cutoff wavelength below 10 μm.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Rogalski, A.; Dereniak, E.L.; Sizov, F.F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Photoelectronics  
  Notes Approved no  
  Call Number Serial 1458  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: