|   | 
Details
   web
Records
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title NbN hot electron bolometer mixers with superior performance for space applications Type Conference Article
Year 2004 Publication Proc. Int. workshop on low temp. electronics Abbreviated Journal Proc. Int. workshop on low temp. electronics
Volume (up) Issue Pages 11-17
Keywords NbN HEB mixers, applications
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Noordwijk Editor Armandillo, E.; Leone, B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International workshop on low temperature electronics- WOLTE 6 - Noordwijk
Notes Approved no
Call Number Serial 1496
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Noise performance of NbN hot electron bolometer mixers at 2.5 THz and its dependence on the contact resistance Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 11-19
Keywords NbN HEB mixers
Abstract NbN hot electron bolometer mixers (HEBM) are at this moment the best heterodyne receivers for frequencies above 1 Thz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. The result is a low transparency interface between the bolometer itself and the contact/antenna structure. In this paper we report a detailed experimental study on a novel idea to increase the transparency of this interface. This leads to a record sensitivity and more reproducible performance. We compare identical bolometers, coupled with a spiral antenna, with different NbN bolometer-contact pad interfaces. We find that cleaning the NbN interface alone results in an increase in the noise temperature. However, cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature of the HEBm with more than a factor of 2. A device with a contact pad on top of an in-situ cleaned NbN film consisting of 10 nm of NbTiN and 40 nm of gold has a DSB noise temperature of 1050 K at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1497
Permanent link to this record
 

 
Author Yagoubov, P. L.; Hoogeveen, R. W. M.; Maurellis, A. M.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Hiibers, H.-W.; Richter, H.; Semenov, A.; Gol'tsman, G.; Voronov, B.; Koshelets, V.; Shitov, S.; Ellison, B.; Kerridge, B.; Matheson, D.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J.
Title TELIS — development of a new balloon borne THz/submm heterodyne limb sounder Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 204-214
Keywords limb-sounder, TELIS
Abstract We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth's atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organisation of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) in the United Kingdom and the Deutschen Zentrum far Luft- und Raumfahrt (DLR) in Germany (lead institute). TELIS will utilise state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument capable of providing broad spectral coverage, high spectral resolution and long flight duration (-24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constituents such as OH, HO,, C10, BrO together will longer lived constituents such as 0 3 , HCL and N 2 0. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the University of Karlsruhe, Germany. MIPAS-B will provide simultaneous and complementary spectral measurements over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spacebome instruments planned by the European Space Agency (ESA).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1499
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W.
Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 405-412
Keywords NbN HEB mixers
Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1502
Permanent link to this record
 

 
Author Il'in, K.; Siegel, M.; Semenov, A.; Engel, A.; Hübers, H.-W.; Hollmann, E.; Gol'tsman, G.; Voronov, B.
Title Thickness dependence of superconducting properties of ultrathin Nb and NbN films Type Conference Article
Year 2004 Publication AKF-Frühjahrstagung Abbreviated Journal
Volume (up) Issue Pages
Keywords Nb, NbN films, has potential plagiarism
Abstract
Address Berlin-Adlershof
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1503
Permanent link to this record