|   | 
Details
   web
Records
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M.
Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume (up) Issue Pages CThM8
Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors
Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1517
Permanent link to this record
 

 
Author Минаева, Ольга Вячеславовна
Title Быстродействующий однофотонный детектор на основе тонкой сверхпроводниковой пленки NbN Type Manuscript
Year 2009 Publication М. МПГУ Abbreviated Journal
Volume (up) Issue Pages
Keywords SSPD
Abstract
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor
Language russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 585
Permanent link to this record
 

 
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G.
Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type Miscellaneous
Year 2001 Publication OFCC/ICQI Abbreviated Journal OFCC/ICQI
Volume (up) Issue Pages Pa3
Keywords NbN SSPD, SNSPD, QKD, quantum cryptography
Abstract We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.
Address Rochester, New York
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information
Notes -- from poster session. Approved no
Call Number Serial 1544
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X.
Title High speed travelling wave single-photon detectors with near-unity quantum efficiency Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume (up) Issue Pages 1-14
Keywords SPD
Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. Close-to-unity photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides and achieve single photon detection efficiency up to 94% at telecom wavelengths. Our detectors are fully embedded in a scalable, low loss silicon photonic circuit and provide ultrashort timing jitter of 18ps at multi-GHz detection rates. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1108.5299 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 661
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore, A.
Title Waveguide single-photon detectors for integrated quantum photonic circuits Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume (up) Issue Pages 11
Keywords SPD
Abstract he generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1108.5107 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 668
Permanent link to this record
 

 
Author Driessen, Eduard Frans Clemens
Title Coupling light to periodic nanostructures Type Journal Article
Year 2009 Publication Faculty of Science, Leiden University Abbreviated Journal Fac. Scien., Leiden Un.
Volume (up) Issue Pages 144
Keywords SSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Issue Date: 2009-09-24 Approved no
Call Number RPLAB @ gujma @ Serial 675
Permanent link to this record
 

 
Author Engel, Andreas; Aeschbacher, Adrian; Inderbitzin, Kevin; Schilling, Andreas; Il'in, Konstantin; Hofherr, Matthias; Siegel, Michael; Semenov, Alexei; Hübers, Heinz-Wilhelm
Title Tantalum nitride superconducting single-photon detectors with low cut-off energy Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume (up) Issue Pages 9
Keywords SSPD
Abstract Materials with a small superconducting energy gap favor a high detection efficiency of low-energy photons in superconducting nanowire single-photon detectors. We developed a TaN detector with smaller gap and lower density of states at the Fermi energy than in comparable NbN devices, while other relevant parameters remain essentially unchanged. This results in a reduction of the minimum photon energy required for direct detection to $\approx1/3$ as compared to NbN.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1110.4576 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 687
Permanent link to this record
 

 
Author Dorenbos, S. N.; Heeres, R.W.; Driessen, E.F.C; Zwiller, V.
Title Efficient and robust fiber coupling of superconducting single photon detectors Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume (up) Issue Pages 6
Keywords SSPD
Abstract We applied a recently developed fiber coupling technique to superconducting single photon detectors (SSPDs). As the detector area of SSPDs has to be kept as small as possible, coupling to an optical fiber has been either inefficient or unreliable. Etching through the silicon substrate allows fabrication of a circularly shaped chip which self aligns to the core of a ferrule terminated fiber in a fiber sleeve. In situ alignment at cryogenic temperatures is unnecessary and no thermal stress during cooldown, causing misalignment, is induced. We measured the quantum efficiency of these devices with an attenuated tunable broadband source. The combination of a lithographically defined chip and high precision standard telecommunication components yields near unity coupling efficiency and a system detection efficiency of 34% at a wavelength of 1200 nm. This quantum efficiency measurement is confirmed by an absolute efficiency measurement using correlated photon pairs (with $\lambda$ = 1064 nm) produced by spontaneous parametric down-conversion. The efficiency obtained via this method agrees well with the efficiency measured with the attenuated tunable broadband source.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1109.5809 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 689
Permanent link to this record
 

 
Author Корнеева, Ю. П.; Флоря, И. Н.; Корнеев, А. А.; Гольцман, Г. Н.
Title Cверхпроводящий однофотонный детектор для дальнего ИК диапазона длин волн Type Conference Article
Year 2010 Publication Науч. сессия НИЯУ МИФИ Abbreviated Journal Науч. сессия НИЯУ МИФИ
Volume (up) Issue Pages 46-47
Keywords SSPD
Abstract Мы представляем быстродействующий сверхпроводниковый однофотонный детектор (SSPD) для дальнего инфракрасного диапазона на основе ультратонкой монокристаллической пленки NbN толщиной 3 нм, состоящий из параллельных полосок. QE на длине волны 1,5.μм и 1,3 μм для предложенного SSPD практически одинаковы. SSPD показывает отклик длительностью 200 пс, что открывает путь к детекторам, обладающим скоростью счета свыше 1 ГГц.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-5-7262-1227-2 Medium
Area Expedition Conference
Notes УДК 533.14(06)+004.056(06) Фотоника и информационная оптика Approved no
Call Number Serial 1144
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N.
Title Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 105-111
Keywords NbN SSPD, SNSPD
Abstract We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1528
Permanent link to this record