toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E. url  doi
openurl 
  Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 5 Issue 2 Pages 3065-3068  
  Keywords NbN HEB mixers  
  Abstract NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes About LO power required Approved no  
  Call Number Serial 255  
Permanent link to this record
 

 
Author Zorin, M.; Gol'tsman, G.N.; Karasik, B.S.; Elantev, A.I.; Gershenzon, E.M.; Lindgren, M.; Danerud, M.; Winkler, D. url  doi
openurl 
  Title Optical mixing in thin YBa2Cu3O7-x films Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 5 Issue 2 Pages 2431-2434  
  Keywords YBCO HTS HEB mixers  
  Abstract High quality, j/sub c/ (77 K)>10/sup 6/ A/cm/sup 2/, epitaxial YBa2Cu3O7-x films of 50 nm thickness were patterned into ten parallel 1 /spl mu/m wide strips. The film structure was coupled to a single-mode fiber. Mixer response was obtained at 0.78 /spl mu/m using laser frequency modulation and an optical delay line. Using two semiconductor lasers at 1.55 /spl mu/m wavelength the beating signal was used to measure the photoresponse up to 18 GHz. Nonequilibrium photoresponse in the resistive state of the superconductor was observed. Bolometric response dominates up to 3 GHz, after which the nonequilibrium response is constant up to the frequency limit of our registration system. Using an electron heating model the influence of different thermal processes on the conversion loss has been analyzed. Ways of increasing the sensitivity are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1619  
Permanent link to this record
 

 
Author Karasik, B. S.; Milostnaya, I. I.; Zorin, M. A.; Elantev, A. I.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title High speed current switching of homogeneous YBaCuO film between superconducting and resistive states Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 5 Issue 2 Pages 3042-3045  
  Keywords YBCO HTS HEB switches  
  Abstract Transitions of thin structured YBaCuO films from superconducting (S) to normal (N) state and back induced by a supercritical current pulse has been studied. A subnanosecond stage in the film resistance dynamic has been observed. A more gradual (nanosecond) ramp in the time dependence of the resistance follows the fast stage. The fraction of the film resistance which is attained during the fast S-N stage rises with the current amplitude. Subnanosecond N-S switching is more pronounced for smaller amplitudes of driving current and for shorter pulses. The phenomena observed are viewed within the framework of an electron heating model. The expected switching time and repetition rate of an optimized current controlling device are estimated to be 1-2 ps and 80 GHz respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1620  
Permanent link to this record
 

 
Author Gol'tsman, G.; Kouminov, P.; Goghidze, I.; Gershenzon, E. url  doi
openurl 
  Title Nonequilibrium kinetic inductive response of YBCO thin films to low power laser pulses Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 5 Issue 2 Pages 2591-2594  
  Keywords YBCO HTS KID  
  Abstract We have discovered a transient nonequilibrium kinetic inductive voltage response of YBCO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 /spl mu/m and 1.54 /spl mu/m wavelength. By increasing the sensitivity of the read-out system with 100 ps resolution time and diminishing the light intensity (fluence 0.1-2 /spl mu/J/cm/sup 2/) and transport current (density /spl les/10/sup 5/ A/cm/sup 2/) we were able to observe a peculiar bipolar signal form with nearly equal amplitudes for each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively, of the same form as the response in the resistive and normal states: the nonequilibrium picosecond scale component is followed by the bolometric nanosecond component. The nonequilibrium response is interpreted as suppression of the order parameter by excess quasiparticles followed by a change both in resistance (for the resistive state) and in kinetic inductance (for the superconducting state).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1621  
Permanent link to this record
 

 
Author Karasik, B. S.; Gol'tsman, G. N.; Voronov, B. M.; Svechnikov, S. I.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Yngvesson, K. S. url  doi
openurl 
  Title Hot electron quasioptical NbN superconducting mixer Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (down) 5 Issue 2 Pages 2232-2235  
  Keywords NbN HEB mixers  
  Abstract Hot electron superconductor mixer devices made of thin NbN films on SiO/sub 2/-Si/sub 3/N/sub 4/-Si membrane have been fabricated for 300-350 GHz operation. The device consists of 5-10 parallel strips each 5 /spl mu/m long by 1 /spl mu/m wide which are coupled to a tapered slot-line antenna. The I-V characteristics and position of optimum bias point were studied in the temperature range 4.5-8 K. The performance of the mixer at higher temperatures is closer to that predicted by theory for uniform electron heating. The intermediate frequency bandwidth versus bias has also been investigated. At the operating temperature 4.2 K a bandwidth as wide as 0.8 GHz has been measured for a mixer made of 6 nm thick film. The bandwidth tends to increase with operating temperature. The performance of the NbN mixer is expected to be better for higher frequencies where the absorption of radiation should be more uniform.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1622  
Permanent link to this record
 

 
Author Karasik, B. S.; Elantiev, A. I. url  openurl
  Title Analysis of the noise performance of a hot-electron superconducting bolometer mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume (down) Issue Pages 229-246  
  Keywords HEB mixers  
  Abstract A theoretical analysis for the noise temperature of hot–electron superconducting mixer has been presented. Thecontributions of both Johnson noise and electron temperature fluctuations have been evaluated. A set of criteriaensuring low noise performance of the mixer has been stated and a simple analytic expression for the noisetemperature of the mixer device has been suggested. It has been shown that an improvement of the mixer sensitivitydoes not necessarily follow by a decrease of the bandwidth. An SSB noise temperature limit due to the intrinsic noisemechanisms has been estimated to be as low as 40–90 K for a mixer device made from Nb or NbN thin film.Furthermore, the conversion gain bandwidth can be as wide as is allowed by the intrinsic electron temperaturerelaxation time if an appropriate choice of the mixer resistance has been made. The intrinsic mixer noise bandwidthis of 3 GHz for Nb device and of 5 GHz for NbN device. An additional improvement of the theory has been madewhen a distinction between the impedance measured at high intermediate frequency (larger than the mixerbandwidth) and the mixer ohmic resistance has been taken into account.Recently obtained experimental data on Nb and NbNbolometer mixer devices are viewed in connection with thetheoretical predictions.The noise temperature limit has also been specified for the mixer device where an outdiffusion coolingmechanism rather than the electron–phonon energy relaxation determines the mixer bandwidth. A consideration ofthe noise performance of a bolometer mixer made from YBaCuO film utilizing a hot–electron effect has been done.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, Ca Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 258  
Permanent link to this record
 

 
Author Hesler, J. L.; Crowe, T. W.; Bradley, R. F.; Pan, S. K.; Chattopadhyay, G. openurl 
  Title The design, construction and evaluation of a 585 GHz planar Schottky mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume (down) Issue Pages 34-43  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, Ca Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 259  
Permanent link to this record
 

 
Author Krasnosvobodtsev, S. I.; Shabanova, N,P.; Ekimov, E.V.; Nozdrin, V.S.; Pechen, E,V. openurl 
  Title Critical magnetic field of NbC: new data on clean superconductor films Type Journal Article
  Year 1995 Publication Abbreviated Journal Zh. Eks. Teor.Fiz.  
  Volume (down) Issue Pages 534-537  
  Keywords  
  Abstract The temperature dependence of the upper critical magnetic fields of exceptionally low-defect-density films of the superconducting compound NbC has been investigated, and previously unknown parameters of this clean superconductor and its electronic characteristics have been evaluated. An electron density of states at the Fermi level equal to 1.3 states/ eV. Nb atom, a Fermi velocity equal to 2.2X lo7 cmls, a plasma frequency equal to 3.6 eV, and a coherence length to 24 nm have been obtained with an electron mean free path exceeding 40 nm. A vortex-free state existing over the entire temperature range below T, which causes a many-fold increase in the critical magnetic field of the films when the field is aligned parallel to their surface, has been discovered in very thin films of superconducting niobium carbide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 956  
Permanent link to this record
 

 
Author Okunev, 0.; Dzardranov, A.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title Performances of hot—electron superconducting mixer for frequencies less than the gap energy: NbN mixer for 100 GHz operation Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume (down) Issue Pages 247-253  
  Keywords NbN HEB mixers  
  Abstract The possibilities to improve the parameters of the 100 GHz NbN HEB superconducting waveguide mixers have been studied. The device consists of a signal strip 1 gm wide by 2 Am long made of 40 A thick NbN film. The best operation point was found at 5 K, where the mixer bandwidth made up 1.5-2 GHz and the total loss diminished down to 8 dB. The critical current density has been increased up to " 40 6 A/cm 2 , the noise temperature of the receiver (DSB) has reduced down to 450 K and the local oscillator power has decreased down to -.4).1 mcV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1625  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  openurl
  Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume (down) Issue Pages 254-261  
  Keywords NbN HEB mixers  
  Abstract We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1626  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: