toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M. url  doi
openurl 
  Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume (up) 372-376 Issue Pages 448-453  
  Keywords NbN HEB mixers, applications  
  Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1526  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume (up) 372-376 Issue Pages 427-431  
  Keywords NbN HEB mixers, applications  
  Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1527  
Permanent link to this record
 

 
Author Li, Mo; Pernice, W. H. P.; Xiong, C.; Baehr-Jones, T.; Hochberg, M.; Tang, H. X. url  doi
openurl 
  Title Harnessing optical forces in integrated photonic circuits Type Journal Article
  Year 2008 Publication Nature Abbreviated Journal Nature  
  Volume (up) 456 Issue 7221 Pages 480-484  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ Serial 425  
Permanent link to this record
 

 
Author Poglitsch, A.; Waelkens, C.; Geis, N.; Feuchtgruber, H.; Vandenbussche, B.; Rodriguez, L.; Krause, O.; Renotte, E.; van Hoof, C.; Saraceno, P.; Cepa, J.; Kerschbaum, F.; Agnèse, P.; Ali, B.; Altieri, B.; Andreani, P.; Augueres, J.-L.; Balog, Z.; Barl, L.; Bauer, O. H.; Belbachir, N.; Benedettini, M.; Billot, N.; Boulade, O.; Bischof, H.; Blommaert, J.; Callut, E.; Cara, C.; Cerulli, R.; Cesarsky, D.; Contursi, A.; Creten, Y.; De Meester, W.; Doublier, V.; Doumayrou, E.; Duband, L.; Exter, K.; Genzel, R.; Gillis, J.-M.; Grözinger, U.; Henning, T.; Herreros, J.; Huygen, R.; Inguscio, M.; Jakob, G.; Jamar, C.; Jean, C.; de Jong, J.; Katterloher, R.; Kiss, C.; Klaas, U.; Lemke, D.; Lutz, D.; Madden, S.; Marquet, B.; Martignac, J.; Mazy, A.; Merken, P.; Montfort, F.; Morbidelli, L.; Müller, T.; Nielbock, M.; Okumura, K.; Orfei, R.; Ottensamer, R.; Pezzuto, S.; Popesso, P.; Putzeys, J.; Regibo, S.; Reveret, V.; Royer, P.; Sauvage, M.; Schreiber, J.; Stegmaier, J.; Schmitt, D.; Schubert, J.; Sturm, E.; Thiel, M.; Tofani, G.; Vavrek, R.; Wetzstein, M.; Wieprecht, E.; Wiezorrek, E. openurl 
  Title The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal A&A  
  Volume (up) 518 Issue Pages 12  
  Keywords PACS  
  Abstract The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16×25 pixels, each, and two filled silicon bolometer arrays with 16×32 and 32×64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60-210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60-85 μm or 85-125 μm and 125-210 μm, over a field of view of ~1.75'× 3.5', with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47” × 47”, resolved into 5×5 pixels, with an instantaneous spectral coverage of ~1500 km s-1 and a spectral resolution of ~175 km s-1. We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 694  
Permanent link to this record
 

 
Author Griffin, M. J.; Abergel, A.; Abreu, A.; Ade, P. A. R.; André, P.; Augueres, J.-L.; Babbedge, T.; Bae, Y.; Baillie, T.; Baluteau, J.-P.; Barlow, M. J.; Bendo, G.; Benielli, D.; Bock, J. J.; Bonhomme, P.; Brisbin, D.; Brockley-Blatt, C.; Caldwell, M.; Cara, C.; Castro-Rodriguez, N.; Cerulli, R.; Chanial, P.; Chen, S.; Clark, E.; Clements, D. L.; Clerc, L.; Coker, J.; Communal, D.; Conversi, L.; Cox, P.; Crumb, D.; Cunningham, C.; Daly, F.; Davis, G. R.; de Antoni, P.; Delderfield, J.; Devin, N.; di Giorgio, A.; Didschuns, I.; Dohlen, K.; Donati, M.; Dowell, A.; Dowell, C. D.; Duband, L.; Dumaye, L.; Emery, R. J.; Ferlet, M.; Ferrand, D.; Fontignie, J.; Fox, M.; Franceschini, A.; Frerking, M.; Fulton, T.; Garcia, J.; Gastaud, R.; Gear, W. K.; Glenn, J.; Goizel, A.; Griffin, D. K.; Grundy, T.; Guest, S.; Guillemet, L.; Hargrave, P. C.; Harwit, M.; Hastings, P.; Hatziminaoglou, E.; Herman, M.; Hinde, B.; Hristov, V.; Huang, M.; Imhof, P.; Isaak, K. J.; Israelsson, U.; Ivison, R. J.; Jennings, D.; Kiernan, B.; King, K. J.; Lange, A. E.; Latter, W.; Laurent, G.; Laurent, P.; Leeks, S. J.; Lellouch, E.; Levenson, L.; Li, B.; Li, J.; Lilienthal, J.; Lim, T.; Liu, S. J.; Lu, N.; Madden, S.; Mainetti, G.; Marliani, P.; McKay, D.; Mercier, K.; Molinari, S.; Morris, H.; Moseley, H.; Mulder, J.; Mur, M.; Naylor, D. A.; Nguyen, H.; O'Halloran, B.; Oliver, S.; Olofsson, G.; Olofsson, H.-G.; Orfei, R.; Page, M. J.; Pain, I.; Panuzzo, P.; Papageorgiou, A.; Parks, G.; Parr-Burman, P.; Pearce, A.; Pearson, C.; Pérez-Fournon, I.; Pinsard, F.; Pisano, G.; Podosek, J.; Pohlen, M.; Polehampton, E. T.; Pouliquen, D.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Roussel, H.; Rowan-Robinson, M.; Rownd, B.; Saraceno, P.; Sauvage, M.; Savage, R.; Savini, G.; Sawyer, E.; Scharmberg, C.; Schmitt, D.; Schneider, N.; Schulz, B.; Schwartz, A.; Shafer, R.; Shupe, D. L.; Sibthorpe, B.; Sidher, S.; Smith, A.; Smith, A. J.; Smith, D.; Spencer, L.; Stobie, B.; Sudiwala, R.; Sukhatme, K.; Surace, C.; Stevens, J. A.; Swinyard, B. M.; Trichas, M.; Tourette, T.; Triou, H.; Tseng, S.; Tucker, C.; Turner, A.; Vaccari, M.; Valtchanov, I.; Vigroux, L.; Virique, E.; Voellmer, G.; Walker, H.; Ward, R.; Waskett, T.; Weilert, M.; Wesson, R.; White, G. J.; Whitehouse, N.; Wilson, C. D.; Winter, B.; Woodcraft, A. L.; Wright, G. S.; Xu, C. K.; Zavagno, A.; Zemcov, M.; Zhang, L.; Zonca, E. openurl 
  Title The Herschel-SPIRE instrument and its in-flight performance Type Journal Article
  Year 2010 Publication Astron. Astrophys. Abbreviated Journal A&A  
  Volume (up) 518 Issue Pages 7  
  Keywords SPIRE  
  Abstract The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 μm (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4Â´× 8´, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6´. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 695  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: