toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shein, K. V.; Zarudneva, A. A.; Emel’yanova, V. O.; Logunova, M. A.; Chichkov, V. I.; Sobolev, A.S.; Zav’yalov, V. V.; Lehtinen, J. S.; Smirnov, E. O.; Korneeva, Y. P.; Korneev, A. A.; Arutyunov, K. Y. url  doi
openurl 
  Title Superconducting microstructures with high impedance Type Journal Article
  Year 2020 Publication Phys. Solid State Abbreviated Journal Phys. Solid State  
  Volume (up) 62 Issue 9 Pages 1539-1542  
  Keywords superconducting channels, SIS, inetic inductance, tunneling contacts, high impedance  
  Abstract The transport properties of two types of quasi-one-dimensional superconducting microstructures were investigated at ultra-low temperatures: the narrow channels close-packed in the shape of meander, and the chains of tunneling contacts “superconductor-insulator-superconductor.” Both types of the microstructures demonstrated high value of high-frequency impedance and-or the dynamic resistance. The study opens up potential for using of such structures as current stabilizing elements with zero dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7834 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1789  
Permanent link to this record
 

 
Author Huard, B.; Pothier, H.; Esteve, D.; Nagaev, K. E. url  doi
openurl 
  Title Electron heating in metallic resistors at sub-Kelvin temperature Type Journal Article
  Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (up) 76 Issue Pages 165426(1-9)  
  Keywords electron heating in resistor, HEB distributed model, HEB model, hot electrons  
  Abstract In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-Kelvin temperatures can significantly exceed the phonon temperature. Electron cooling proceeds mainly through two processes: electronic diffusion to and from the connecting wires and electron-phonon coupling. The goal of this paper is to present a general solution of the problem in a form that can easily be used in practical situations. As an application, we compute two quantities that depend on the electronic temperature profile: the second and the third cumulant of the current noise at zero frequency, as a function of the voltage across the resistor. We also consider time-dependent heating, an issue relevant for experiments in which current pulses are used, for instance, in time-resolved calorimetry experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk as example for writing the article on the HEB model. Approved no  
  Call Number Serial 936  
Permanent link to this record
 

 
Author Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P. url  doi
openurl 
  Title Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors Type Journal Article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume (up) 87 Issue Pages 330-337  
  Keywords carbon nanotubes, CNT detectors, field effect transistors, FET  
  Abstract Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1778  
Permanent link to this record
 

 
Author Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E. url  doi
openurl 
  Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
  Year 2016 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (up) 93 Issue 6 Pages 064506  
  Keywords boron-doped diamond films, resistive superconducting state, relaxation time  
  Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1167  
Permanent link to this record
 

 
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume (up) 103 Issue Pages 10003 (1 to 2)  
  Keywords graphene field-effect transistor, FET  
  Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1350  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: