|   | 
Details
   web
Records
Author Gao, J.R.; Hiajenius, M.; Yang, Z.Q.; Klapwijk, T.M.; Miao, W.; Shi, S. C.; Voronov, B.; Gortsman, G.
Title Direct comparison of the sensitivity of a spiral and a twin-slot antenna coupled HEB mixer at 1.6 THz Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 59-62
Keywords NbN HEB mixers
Abstract To make a direct comparison of the sensitivity between a spiral and a twin slot antenna coupled HEB mixer, we designed both types of mixers and fabricated them in a single processing run and on the same wafer. Both mixers have similar dimensions of NbN bridges (1.5-2 pm x0.2 pm). At 1.6 THz we obtained a nearly identical receiver noise temperature from both mixers (only 5% difference), which is in a good agreement with the simulation based on semi analytical models for both antennas. In addition, by using a bandpass filter to reduce the direct detection effect and lowering the bath temperature to 2.4 K, we measured the lowest receiver noise temperature of 700 K at 1.63 THz using the twin-slot antenna mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1436
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.
Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Abstract
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 81
Keywords NbN HEB mixers
Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15pm x lpm) NbN hot electron bolometer mixer. It is a quasioptical mixer with a twin slot antenna designed for 700 GHz and the measurement was done at a LO frequency of 670 GHz. The direct detection effect is characterized by a change in the mixer bias current when switching broadband radiation from a 300 K hot load to a 77 K cold load in a standard Y factor measurement. The result is, depending on the receiver under study, an increase or decrease in the receiver noise temperature. We find that the small signal noise temperature, which is the noise temperature that would be observed without the presence of the direct detection effect, and thus the one that is relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 K and 77 K calibration loads. Thus, in our case the direct detection effect reduces the mixer sensitivity. These results are in good agreement with previous measurement at THz frequencies [1]. Other experiments report an increase in mixer sensitivity [2]. To analyze this discrepancy we have designed a separate set of experiments to find out the physical origin of the direct detection effect. Possible candidates are the bias current dependence of the mixer gain and the bias current dependence of the IF match. We measured directly the change in mixer IF match and receiver gain due to the direct detection effect. From these measurements we conclude that the direct detection effect is caused by a combination of bias current reduction when switching form the 77 K to the 300 K load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain. We also find that an increase in receiver sensitivity due to the direct detection effect is only possible if the noise temperature change due to the direct detection is dominated by the mixer-amplifier IF match. [1] J.J.A. Baselmans, A. Baryshev, S.F. Reker, M. Hajenius, J.R. Gao, T.M. Klapwijk, Yu.Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman., Appl. Phys. Lett. 86, 163503 (2005). [2] S. Svechnokov, A. Verevkin, B. Voronov, E. Menschikov. E. Gershenzon, G. Gol'tsman, 9th Int. Symp. On Space THz. Techn., 45, (1999).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1437
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Voronov, B.; Grishina, E.; Klapwijk, T. M.; Gol'tsman, G.; Zorman, C. A.
Title Can NbN films on 3C-SiC/Si change the IF bandwidth of hot electron bolometer mixers? Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 187-189
Keywords NbN HEB mixers
Abstract We realized ultra thin NbN films sputtered grown on a 3C-SiC/Si substrate. The film with a thickness of 3.5-4.5 nm shows a 1', of 11.8 K, which is the highest I`, observed among ultra thin NbN films on different substrates. The high-resolution transmission electron microscopy (HRTEM) studies show that the film has a monocrystalline structure, confirming the epitaxial growth on the 3C-SiC. Based on a two-temperature model and input parameters from standard NbN films on Si, simulations predict that the new film can increase the IF bandwidth of a HEB mixer by about a factor of 2 in comparison to the standard films. In addition, we find standard NbN films on Si with a T c of 9.4 K have a thickness of around 5.5 nm, being thicker than expected (3.5 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1439
Permanent link to this record
 

 
Author Zhang, W.; Jiang, L.; Lin, Z. H.; Yao, Q. J.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Yu. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Development of a quasi-optical NbN superconducting HEB mixer Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 209-213
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolometer) mixer measured at 500 and 850GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled by a 4-K close-cycled refrigerator. Measured receiver noise temperature at 850 and 500GHz are 3000K and 2500K respectively with wire grid as beamsplitter, while the lowest receiver noise temperature is found to be approximately 1200K with Mylar film. The theoretical receiver noise temperature (taking into account the elliptical polarization of log-spiral antenna) is consistent with measured one. The receiver noise temperature and conversion gain with 15-μm Mylar film as the beamsplitter at 500GHz are thoroughly investigated for different LO pumping levels and dc biases. The stability of the mixer’s IF output power is also demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1470
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y.E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G.
Title An investigation of the performance of the waveguide superconducting HEB mixer at different RF embedding impedances Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume (up) Issue Pages 226-229
Keywords waveguide NbN HEB mixers
Abstract We have conducted an investigation of the performance of superconducting hot-electron bolometric (HEB) mixer at 800 GHz as a function of the embedding impedance of the waveguide embedding circuit. Using a single half-height mixer block, we have developed three different mixer chip configurations, offering nominal embedding resistances of 70, 35, and 15 Ohms. Both the High Frequency Structure Simulator (HFSS) software and scaled model impedance measurements were employed in the design process. Two batches of HEB mixers were fabricated to these designs using 3-4 nm thick NbN thin film. The mixers were characterized through receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans. Briefly, a minimum receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer of normal state resistance 62 Ohms incorporated into a circuit offering a nominal embedding impedance of 70 Ohms. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to that of the embedding impedance of the mixer mount.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1472
Permanent link to this record