toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C. url  doi
openurl 
  Title Spectral dependency of superconducting single photon detectors Type Journal Article
  Year 2010 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume (down) 107 Issue 11 Pages 116103 (1 to 3)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1392  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Hübers, H.-W.; Kuzmin, A.; Doerner, S.; Ilin, K.; Siegel, M.; Charaev, I.; Vodolazov, D. url  doi
openurl 
  Title Timing jitter in photon detection by straight superconducting nanowires: Effect of magnetic field and photon flux Type Journal Article
  Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (down) 98 Issue 13 Pages 134504 (1 to 14)  
  Keywords SNSPD, NbN namowires  
  Abstract We studied the effects of the external magnetic field and photon flux on timing jitter in photon detection by straight superconducting NbN nanowires. At two wavelengths 800 and 1560 nm, statistical distribution in the appearance times of photon counts exhibits Gaussian shape at small times and an exponential tail at large times. The characteristic exponential time is larger for photons with smaller energy and increases with external magnetic field while variations in the Gaussian part of the distribution are less pronounced. Increasing photon flux drives the nanowire from the discrete quantum detection regime to the uniform bolometric regime that averages out fluctuations of the total number of nonequilibrium electrons created by the photon and drastically reduces jitter. The difference between standard deviations of Gaussian parts of distributions for these two regimes provides the measure for the strength of electron-number fluctuations; it increases with the photon energy. We show that the two-dimensional hot-spot detection model explains qualitatively the effect of magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1842  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N. url  doi
openurl 
  Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
  Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (down) 97 Issue 18 Pages 184512 (1 to 13)  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1305  
Permanent link to this record
 

 
Author Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S; Astafiev, Oleg doi  openurl
  Title Coherent dynamics and decoherence in a superconducting weak link Type Journal Article
  Year 2016 Publication Physic. Rev. B, Abbreviated Journal Physic. Rev. B,  
  Volume (down) 94 Issue Pages 180508  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 1123  
Permanent link to this record
 

 
Author Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E. url  doi
openurl 
  Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
  Year 2016 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (down) 93 Issue 6 Pages 064506  
  Keywords boron-doped diamond films, resistive superconducting state, relaxation time  
  Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1167  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: