toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kim, Yong-Su; Lee, Jong-Chan; Kwon, Osung; Kim, Yoon-Ho openurl 
  Title Protecting entanglement from decoherence using weak measurement and quantum measurement reversal Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (down) 8 Issue 2 Pages 117-120  
  Keywords fromIPMRAS  
  Abstract Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing, quantum cryptography, quantum teleportation and quantum metrology. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 815  
Permanent link to this record
 

 
Author Bason, Mark G.; Viteau, Matthieu; Malossi, Nicola; Huillery, Paul; Arimondo, Ennio; Ciampini, Donatella; Fazio, Rosario; Giovannetti, Vittorio; Mannella, Riccardo; Morsch, Oliver openurl 
  Title High-fidelity quantum driving Type Journal Article
  Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (down) 8 Issue 2 Pages 147-152  
  Keywords fromIPMRAS  
  Abstract Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose-Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible with the Heisenberg uncertainty principle. In the opposite limit, we realize the recently proposed transitionless superadiabatic protocols in which the system follows the instantaneous adiabatic ground state nearly perfectly. We demonstrate that superadiabatic protocols are extremely robust against control parameter variations, making them useful for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 816  
Permanent link to this record
 

 
Author Gao, Jie; McMillan, James F.; Wong, Chee Wei openurl 
  Title Nanophotonics: Remote on-chip coupling Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume (down) 6 Issue 1 Pages 7-8  
  Keywords fromIPMRAS  
  Abstract Scientists have demonstrated strongly coupled photon states between two distant high-Q photonic crystal cavities connected by a photonic crystal waveguide. Remote dynamic control over the coupled states could aid the development of delay lines, optical buffers and qubit operations in both classical and quantum information processing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 779  
Permanent link to this record
 

 
Author Pile, David openurl 
  Title How many bits can a photon carry Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume (down) 6 Issue 1 Pages 14-15  
  Keywords fromIPMRAS  
  Abstract Quantum physics offers a way to enhance the amount of information a photon can carry, with potential applications in optical communication, lithography, metrology and imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes View from... OSA Frontiers in Optics 2011: How many bits can a photon carry? Approved no  
  Call Number RPLAB @ gujma @ Serial 780  
Permanent link to this record
 

 
Author Santori, Charles; Beausoleil, Raymond G. openurl 
  Title Quantum memory: Phonons in diamond crystals Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume (down) 6 Issue Pages 10-12  
  Keywords fromIPMRAS  
  Abstract The demonstration that quantum information can be stored in a bulk-diamond crystal in the form of an optically excited phonon gives researchers a new type of mechanical solid-state quantum memory to explore.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 781  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: