|   | 
Details
   web
Records
Author Henrich, D.; Dorner,S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M.
Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content Type Journal Article
Year 2012 Publication Abbreviated Journal J. Appl. Phys.
Volume (up) 112 Issue Pages
Keywords SSPD, SNSPD, magnetron sputtering, spectrum, NbN film, nitrogen concentration
Abstract The spectral detection efficiency and the dark count rate of superconducting nanowire

single-photon detectors (SNSPD) have been studied systematically on detectors made from thin

NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm

thick NbN films results in a decrease of the dark count rates more than two orders of magnitude

and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed

phenomena are explained by an improvement of uniformity of NbN films that has been confirmed

by a decrease of resistivity and an increase of the ratio of the measured critical current to the

depairing current. The latter factor is considered as the most crucial for both the cut-off

wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria

for material properties to optimize SNSPD in the infrared spectral region. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4757625]
Address
Corporate Author D. Henrich, S. Dorner, M. Hofherr, K. Il'in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, M. Siegel Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ seleznev @ Serial 877
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W.
Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume (up) 116 Issue 4 Pages 043906 (1 to 9)
Keywords NbN SSPD, SNSPD, TaN
Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1357
Permanent link to this record
 

 
Author Shcherbatenko, M.; Elezov, M.; Manova, N.; Sedykh, K.; Korneev, A.; Korneeva, Y.; Dryazgov, M.; Simonov, N.; Feimov, A.; Goltsman, G.; Sych, D.
Title Single-pixel camera with a large-area microstrip superconducting single photon detector on a multimode fiber Type Journal Article
Year 2021 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (up) 118 Issue 18 Pages 181103
Keywords NbN SSPD, SNSPD
Abstract High sensitivity imaging at the level of single photons is an invaluable tool in many areas, ranging from microscopy to astronomy. However, development of single-photon sensitive detectors with high spatial resolution is very non-trivial. Here we employ the single-pixel imaging approach and demonstrate a proof-of-principle single-pixel single-photon imaging setup. We overcome the problem of low light gathering efficiency by developing a large-area microstrip superconducting single photon detector coupled to a multi-mode optical fiber interface. We show that the setup operates well in the visible and near infrared spectrum, and is able to capture images at the single-photon level.

We thank Philipp Zolotov and Pavel Morozov for NbN film fabrication, ARC coating, and fiber coupling of the detector. We also thank Swabian Instruments GmbH and Dr. Helmut Fedder personally for the kindly provided experimental equipment (Time Tagger Ultra 8). The work in the part of SNSPD research and development was supported by the Russian Foundation for Basic Research Project No. 18-29-20100. The work in the part of the optical setup and imaging was supported by Russian Foundation for Basic Research Project No. 20-32-51004.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1770
Permanent link to this record
 

 
Author Anfertev, V.; Vaks, V.; Revin, L.; Pentin, I.; Tretyakov, I.; Goltsman, G.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title High resolution THz gas spectrometer based on semiconductor and superconductor devices Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume (up) 132 Issue Pages 02001 (1 to 2)
Keywords NbN HEB mixers, detectors, THz spectroscopy
Abstract The high resolution THz gas spectrometer consists of a synthesizer based on Gunn generator with a semiconductor superlattice frequency multiplier as a radiation source, and an NbN hot electron bolometer in a direct detection mode as a THz radiation receiver was presented. The possibility of application of a quantum cascade laser as a local oscillator for a heterodyne receiver which is based on an NbN hot electron bolometer mixer is shown. The ways for further developing of the THz spectroscopy were outlined.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1328
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.
Title Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume (up) 151 Issue 1-2 Pages 591-596
Keywords NbN SSPD, SNSPD
Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1244
Permanent link to this record