|   | 
Details
   web
Records
Author Tretyakov, I. V.; Anfertyev, V. A.; Revin, L. S.; Kaurova, N. S.; Voronov, B. M.; Vaks, V. L.; Goltsman, G. N.
Title Sensitivity and resolution of a heterodyne receiver based on the NbN HEB mixer with a quantum-cascade laser as a local oscillator Type Journal Article
Year 2018 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume (down) 60 Issue 12 Pages 988-992
Keywords NbN HEB mixer
Abstract We present the results of experimental studies of the basic characteristics and operation features of a terahertz heterodyne detector based on the superconducting NbN HEB mixer and a quantum cascade laser as a local oscillator operating at a frequency of 2.02 THz. The measured noise temperature of such a mixer amounted to 1500 K. The spectral resolution of the detector is determined by the width of the local-oscillator spectral line whose measured value does not exceed 1 MHz. The quantum-cascade laser could be linearly tuned with respect to frequency with the coefficient 7.2 MHz/mA within the limits of the current oscillation bandwidth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1307
Permanent link to this record
 

 
Author Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P.
Title Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser Type Journal Article
Year 2017 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume (down) 60 Issue 7 Pages 518-524
Keywords NbN HEB mixer, QCL
Abstract We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1322
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S.
Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume (down) 57 Issue 7 Pages 971-974
Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers
Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1378
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume (down) 54 Issue 7 Pages 2944-2948
Keywords NbN HEB mixers
Abstract In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1448
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G.
Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume (down) 52 Issue 10 Pages 2338-2343
Keywords NbN HEB mixer, applications
Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1484
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.
Volume (down) 48 Issue 4 Pages 683-689
Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range
Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 573
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume (down) 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume (down) 47 Issue 12 Pages 2519-2527
Keywords NbN HEB mixers
Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-9670 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1560
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Loudkov, D. N.
Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
Year 2003 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume (down) 46 Issue 8/9 Pages 604-617
Keywords NbN HEB mixers
Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes UDC 537.312.62 Approved no
Call Number Serial 472
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E.
Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume (down) 42 Issue 1 Pages 41-47
Keywords NbN HEB mixers, anti-reflection coating
Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1548
Permanent link to this record