|   | 
Details
   web
Records
Author Gol’tsman, G.; Okunev, O.; Chulkova, G.; Lipatov, A.; Dzardanov, A.; Smirnov, K.; Semenov, A.; Voronov, B.; Williams, C.; Sobolewski, R.
Title Fabrication and properties of an ultrafast NbN hot-electron single-photon detector Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume (down) 11 Issue 1 Pages 574-577
Keywords NbN SSPD, SNSPD
Abstract A new type of ultra-high-speed single-photon counter for visible and near-infrared wavebands based on an ultrathin NbN hot-electron photodetector (HEP) has been developed. The detector consists of a very narrow superconducting stripe, biased close to its critical current. An incoming photon absorbed by the stripe produces a resistive hotspot and causes an increase in the film’s supercurrent density above the critical value, leading to temporary formation of a resistive barrier across the device and an easily measurable voltage pulse. Our NbN HEP is an ultrafast (estimated response time is 30 ps; registered time, due to apparatus limitations, is 150 ps), frequency unselective device with very large intrinsic gain and negligible dark counts. We have observed sequences of output pulses, interpreted as single-photon events for very weak laser beams with wavelengths ranging from 0.5 /spl mu/m to 2.1 /spl mu/m and the signal-to-noise ratio of about 30 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1547
Permanent link to this record
 

 
Author Nikoghosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V.
Title Effect of absorption on the efficiency of THz radiation generation in a nonlinear crystal placed into a waveguide Type Journal Article
Year 2018 Publication Armenian J. Phys. Abbreviated Journal Armenian J. Phys.
Volume (down) 11 Issue 4 Pages 257-262
Keywords THz, waveguide, nonlinear crystal
Abstract The effect of THz radiation absorption on the efficiency of generation of coherent THz radiation in a nonlinear optical crystal placed into a metal rectangular waveguide is studied. The efficiency of the nonlinear conversion of optical laser radiation to the THz band is also a function of the phase-matching (PM) condition inside the nonlinear crystal. The method of partial filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. Phase matching was obtained by the proper choice of the thickness of the nonlinear crystal, namely the degree of partial filling of the waveguide. We have studied the THz radiation attenuation caused by the losses in both the metal walls of the waveguide and in the crystal, taking into account the dimension of the cross section of the waveguide, the degree of partial filling and its dielectric constant.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1829-1171 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1291
Permanent link to this record
 

 
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E.
Title Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume (down) 11 Issue 1 Pages 952-954
Keywords NbN HEB mixers
Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1546
Permanent link to this record
 

 
Author Blagosklonskaya, L. E.; Gershenzon, E. M.; Gol’tsman, G. N.; Elant’ev, A. I.
Title Effect of a strong magnetic field on the spectrum of donors in InSb Type Journal Article
Year 1978 Publication Sov. Phys. Semicond. Abbreviated Journal Sov. Phys. Semicond.
Volume (down) 11 Issue 12 Pages 1395-1397
Keywords InSb, spectrum of donors, strong magnetic field
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1725
Permanent link to this record
 

 
Author Blagosklonskaya, L. E.; Gershenzon, E. M.; Gol'tsman, G. N.; Elant'ev, A. I.
Title Effect of a high magnetic field on the spectrum of donors in InSb Type Journal Article
Year 1977 Publication Fizika i Tekhnika Poluprovodnikov Abbreviated Journal Fizika i Tekhnika Poluprovodnikov
Volume (down) 11 Issue 12 Pages 2373-2375
Keywords InSb, energy spectrum, donors, high magnetic field
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Воздействие сильного магнитного поля на спектр доноров в InSb Approved no
Call Number Serial 1729
Permanent link to this record