toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol'tsman, G. N. url  doi
openurl 
  Title Hot electron bolometric mixers: new terahertz technology Type Journal Article
  Year 1999 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology  
  Volume (down) 40 Issue 3 Pages 199-206  
  Keywords NbN HEB mixers  
  Abstract This paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixers has crossed the level of 1 K GHz−1 at 430 GHz (410 K), 600–650 GHz (480 K), 750 GHz (600 K), 810 GHz (780 K) and is close to that level at 1.1 THz (1250 K) and 2.5 THz (4500 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and about 100 nW for mixers made by e-beam lithography. A waveguide version of 800 GHz receiver was installed at the Submillimeter Telescope Observatory on Mt. Graham, AZ, to conduct astronomical observations of known submillimeter lines (CO, J=7→6, CI, J=2→1). It was proved that the receiver works as a practical instrument.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1570  
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N. url  doi
openurl 
  Title Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
  Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume (down) 36 Issue 12 Pages 1103-1105  
  Keywords NbN HEB mixer  
  Abstract Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7850 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1389  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Yao, Q. J.; Lin, Z. H.; Shi, S. C.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Spectral response and noise temperature of a 2.5 THz spiral antenna coupled NbN HEB mixer Type Journal Article
  Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia  
  Volume (down) 36 Issue Pages 334-337  
  Keywords NbN HEB mixer  
  Abstract We report on a 2.5 THz spiral antenna coupled NbN hot electron bolometer (HEB) mixers, fabricated with in-situ process. The receiver noise temperature with lowest value of 1180 K is in good agreement with calculated quantum efficiency factor as a function of bias voltage. In addition, the measured spectral response of the spiral antenna coupled NbN HEB mixer shows broad frequency coverage of 0.8-3 THz, and corrected response for optical losses, FTS, and coupling efficiency between antenna and bolometer falls with frequency due to diffraction-limited beam of lens/antenna combination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1875-3892 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1381  
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Kaurova, N.; Rudzinski, M.; Desmaris, V.; Belitsky, V.; Goltsman, G. url  doi
openurl 
  Title Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer Type Journal Article
  Year 2019 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume (down) 32 Issue 7 Pages 075003  
  Keywords NbN HEB mixer, GaN buffer layer, sapphire substrate  
  Abstract We report on the signal-to-noise and gain bandwidth of a niobium nitride (NbN) hot-electron bolometer (HEB) mixer at 2 THz fabricated on a sapphire substrate with a GaN buffer layer. Two mixers with different DC properties and geometrical dimensions were studied and they demonstrated very close bandwidth performance. The signal-to-noise bandwidth is increased to 8 GHz in comparison to the previous results, obtained without a buffer-layer. The data were taken in a quasi-optical system with the use of the signal-to-noise method, which is close to the signal levels used in actual astrophysical observations. We find an increase of the gain bandwidth to 5 GHz. The results indicate that prior results obtained on a substrate of crystalline GaN can also be obtained on a conventional sapphire substrate with a few micron MOCVD-deposited GaN buffer-layer.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Antipov_2019 Serial 1277  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume (down) 27 Issue 8 Pages 085013 (1 to 5)  
  Keywords NbN HEB mixers  
  Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: