|   | 
Details
   web
Records
Author Varyukhin, S. V.; Zakharov, A. A.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsina, N. G.; Chulkova, G. M.
Title Low energy excitation in La2CuO4 Type Journal Article
Year 1990 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume (down) 3 Issue 5 Pages 832-837
Keywords metal-dielectric-La2CuO4, monocrystals
Abstract Measurements of transmission and photoconductivity spectra in submillimeter wave length range as well as of capacity C and conductivity G in the region of acoustic frequencies of metal-dielectric-La2CuO4 system at low temperatures are performed using La2CuO4 monocrystals. Optical spectra posses a threshold character, a sharp decrease of transmission and photocoductivity signal occurs in the energy region hν>1.5 MeV. C(ω,T) and G(ω, T) dependences have a universal form typical of Debye type relaxation processes. Relaxation time dependence is of thermoactivated character τ(T)∼exp(ξ/T) with the gap value ξ≅2 meV. It is assumed that excitations with characteristic energy of ∼2 meV exist in La2CuO4. A possible nature of the detected low-energy excitations is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1688
Permanent link to this record
 

 
Author Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea
Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume (down) 2 Issue 5 Pages 302-306
Keywords SSPD, photon-number-resolving
Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 916
Permanent link to this record
 

 
Author Shurakov, A.; Seliverstov, S.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.
Title Input bandwidth of hot electron bolometer with spiral antenna Type Journal Article
Year 2012 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.
Volume (down) 2 Issue 4 Pages 400-405
Keywords NbN HEB bolometers bandwidth, log-spiral antenna
Abstract We report the results of our study of the input bandwidth of hot electron bolometers (HEB) embedded into the planar log-spiral antenna. The sensitive element is made of the ultrathin superconducting NbN film patterned as a bridge at the feed of the antenna. The contacts between the antenna and a sensitive element are made from in situ deposited gold (i.e., deposited over NbN film without breaking vacuum), which gives high quality contacts and makes the response of the HEB at higher frequencies less affected by the RF loss. An accurate experimental spectroscopic procedure is demonstrated that leads to the confirmation of the wide ( 8 THz) bandwidth in this antenna coupled device.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2156-342X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1161
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Korneev, A.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Minaeva, O.; Smirnov, K.; Voronov, B.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2005 Publication Phys. Stat. Sol. (C) Abbreviated Journal Phys. Stat. Sol. (C)
Volume (down) 2 Issue 5 Pages 1480-1488
Keywords NbN SSPD, SNSPD
Abstract We present our progress on the research and development of NbN superconducting single‐photon detectors (SSPD's) for ultrafast counting of near‐infrared photons for secure quantum communications. Our SSPD's operate in the quantum detection mode based on the photon‐induced hotspot formation and subsequent development of a transient resistive barrier across an ultrathin and submicron‐width superconducting stripe. The devices are fabricated from 4‐nm‐thick NbN films and kept in the 4.2‐ to 2‐K temperature range. The detector experimental quantum efficiency in the photon‐counting mode reaches above 40% for the visible light and up to 30% in the 1.3‐ to 1.55‐µm wavelength range with dark counts below 0.01 per second. The experimental real‐time counting rate is above 2 GHz and is limited by our readout electronics. The SSPD's timing jitter is below 18 ps, and the best‐measured value of the noise‐equivalent power (NEP) is 5 × 10–21 W/Hz1/2 at 1.3 µm. In terms of quantum efficiency, timing jitter, and maximum counting rate, our NbN SSPD's significantly outperform semiconductor avalanche photodiodes and photomultipliers in the 1.3‐ to 1.55‐µm range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1610-1634 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1479
Permanent link to this record
 

 
Author Chen, J.; Kang, L.; Jin, B. B.; Xu, W. W.; Wu, P. H.; Zhang, W.; Jiang, L.; Li, N.; Shi, S. C.; Gol'tsman, G. N.
Title Properties of terahertz superconducting hot electron bolometer mixers Type Journal Article
Year 2008 Publication Int. J. Terahertz Sci. Technol. Abbreviated Journal Int. J. Terahertz Sci. Technol.
Volume (down) 1 Issue 1 Pages 37-41
Keywords NbN HEB mixers, noise temperature
Abstract A quasi-optical superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixer has been fabricated and measured in the terahertz (THz) frequency range of 0.5~2.52 THz. A receiver noise temperature of 2000 K at 2.52 THz has been obtained for the mixer without corrections. Also, the effect of a Parylene C anti-reflection (AR) coating on the silicon (Si) lens has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1417
Permanent link to this record
 

 
Author Pernice, W.; Schuck, C.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X.
Title High speed travelling wave single-photon detectors with near-unity quantum efficiency Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume (down) Issue Pages 1-14
Keywords SPD
Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. Close-to-unity photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides and achieve single photon detection efficiency up to 94% at telecom wavelengths. Our detectors are fully embedded in a scalable, low loss silicon photonic circuit and provide ultrashort timing jitter of 18ps at multi-GHz detection rates. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1108.5299 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 661
Permanent link to this record
 

 
Author Гольцман, Г. Н.; Разумовская, И. В.; Окунев, О. В; Чулкова, Г. М.; Корнеев, А. А.; Финкель, М. И.; Масленников, С. Н.; Семенов, А. В.; Александров, В. Н.
Title Сборник программ учебных дисциплин профессионального цикла подготовки магистров и бакалавров по направлению «Физика» Type Journal Article
Year 2011 Publication Прометей Abbreviated Journal Прометей
Volume (down) Issue Pages 67
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Учебное пособие Approved no
Call Number RPLAB @ gujma @ Serial 717
Permanent link to this record
 

 
Author Ожегов, Р.В.; Окунев, О.В.; Гольцман, Г.Н.
Title Флуктуационная чувствительность сверхпроводящего болометрического смесителя на эффекте разогрева электронного газа Type Journal Article
Year 2009 Publication Радиотехника Abbreviated Journal
Volume (down) Issue 3 Pages 120-124
Keywords смеситель на горячих электронах; флуктуационная чувствительность; тепловизор терагерцевого диапазона частот; hot-electron bolometer mixer; Imaging system; Noise equivalent temperature difference; Heterodyne receiver; Terahertz range
Abstract Interest in research in the terahertz range is driven by a great number of various applications, where terahertz instruments may play a leading role. To name just a few, such applications include study of the cosmic microwave background radiation and the distribution of the dark matter, medicine, navigation, fire alarm, security systems and environmental monitoring. The paper discusses the possibility of using a receiver based on the hot-electron effect in superconducting films as an imaging system. We present the results of the noise equivalent temperature difference (NETD) measurements performed with a hot-electron bolometer mixer made from a thin superconducting film. The receiver with a noise temperature of ~ 3800 K at a local oscillator frequency of 300 GHz a bandwidth of 500 MHz and an integration time of 1 s has offered an NETD of 0.5 K. We have also developed a technique that enabled us to reduce the contribution of the mixer gain fluctuations to the overall system instability. As of this writing, the above value of the NETD is the lowest value offered for this type of receiver, which indicates the possibility to use such receivers in real-time imaging systems. The technique offered in the paper for achieving the limiting value of the NETD offers an alternative to the phase-locking scheme.

Представены результаты измерения флуктуационной чувствительности (NETD – noise equivalent temperature difference) болометрического смесителя на эффекте разогрева электронного газа в тонких сверхпроводящих пленках. Получено предельное значение NETD, равное 0,5 К, при шумовой температуре приемника 3800 К, ширине полосы преобразования 500 МГц, постоянной времени 1 с и частоте гетеродина 300 ГГц. Разработана методика достижения предельной флуктуационной чувствительности, позволяющая избежать влияния нестабильности коэффициента преобразования смесителя.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 728
Permanent link to this record
 

 
Author Ожегов, Роман Викторович
Title Флуктуационная чувствительность и стабильность приемников с СИС и HEB смесителями для терагерцового тепловидения Type Journal Article
Year 2011 Publication Радиофизика Abbreviated Journal
Volume (down) Issue Pages 135
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 731
Permanent link to this record
 

 
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol'tsman, G.
Title One-dimensional resistive states in quasi-two-dimensional superconductors Type Journal Article
Year 2007 Publication arXiv:0709.0709v1 [cond-mat.supr-con] Abbreviated Journal
Volume (down) Issue Pages 1-11
Keywords
Abstract We investigate competition between one- and two-dimensional topological excitations – phase slips and vortices – in formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature T(C0). The widths w = 100 nm of our ultrathin NbN samples is substantially larger than the Ginzburg-Landau coherence length ξ = 4nm and the fluctuation resistivity above T(C0) has a two-dimensional character. However, our data shows that the resistivity below T(C0) is produced by one-dimensional excitations, – thermally activated phase slip strips (PSSs) overlapping the sample cross-section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current/temperature variations. Measuring the resistivity within seven orders of magnitude, we find that the quantum phase slips can only be essential below this level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 948
Permanent link to this record