|   | 
Details
   web
Records
Author Gol’tsman, G. N.; Smirnov, K. V.
Title Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures Type Journal Article
Year 2001 Publication Jetp Lett. Abbreviated Journal Jetp Lett.
Volume (down) 74 Issue 9 Pages 474-479
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract Theoretical and experimental works devoted to studying electron-phonon interaction in the two-dimensional electron gas of semiconductor heterostructures at low temperatures in the case of strong heating in an electric field under quasi-equilibrium conditions and in a quantizing magnetic field perpendicular to the 2D layer are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes По итогам проектов российского фонда фундаментальных исследований. Проект РФФИ # 98-02-16897 Электрон-фононное взаимодействие в двумерном электронном газе полупроводниковых гетероструктур при низких температурах Approved no
Call Number Serial 1541
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
Year 2000 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume (down) 71 Issue 1 Pages 31-34
Keywords 2DEG, GaAs/AlGaAs heterostructures
Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no
Call Number Serial 1559
Permanent link to this record
 

 
Author Korneev, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits Type Journal Article
Year 2003 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering
Volume (down) 69 Issue 2-4 Pages 274-278
Keywords NbN SSPD, SNSPD, applications
Abstract We present a new, simple to manufacture superconducting single-photon detector operational in the range from ultraviolet to mid-infrared radiation wavelengths. The detector combines GHz counting rate, high quantum efficiency and very low level of dark (false) counts. At 1.3–1.5 μm wavelength range our detector exhibits a quantum efficiency of 5–10%. The detector photoresponse voltage pulse duration was measured to be about 150 ps with jitter of 35 ps and both of them were limited mostly by our measurement equipment. In terms of quantum efficiency, dark counts level, speed of operation the detector surpasses all semiconductor counterparts and was successfully applied for CMOS integrated circuits diagnostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1511
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol’tsman, G. N.; Gershenzon, E. M.; Ingvesson, K. S.
Title Direct measurements of energy relaxation times on an AlGaAs/GaAs heterointerface in the range 4.2–50 K Type Journal Article
Year 1996 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume (down) 64 Issue 5 Pages 404-409
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract The temperature dependence of the energy relaxation time τe (T) of a two-dimensional electron gas at an AlGaAs/GaAs heterointerface is measured under quasiequilibrium conditions in the region of the transition from scattering by acoustic phonons to scattering with the participation of optical phonons. The temperature interval of constant τe, where scattering by the deformation potential predominates, is determined. In the preceding, low-temperature region, where piezoacoustic and deformation-potential-induced scattering processes coexist, τ e decreases slowly with increasing temperature. Optical phonons start to participate in the scattering processes at T∼25 K (the characteristic phonon lifetime was equal to τLOτ4.5 ps). The energy losses calculated from the τe data in a model with an effective nonequilibrium electron temperature agree with the published data obtained under strong heating conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes http://jetpletters.ru/ps/981/article_14955.shtml (“Прямые измерения времен энергетической релаксации на гетерогранице AlGaAs/GaAs в диапазоне 4.2 – 50 К”) Approved no
Call Number Serial 1608
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S.
Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (down) 61 Issue Pages 1081-1085
Keywords SSPD array
Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 408
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Rosental, V. A.; Smirnov, K. V.; Goltsman, G. N.; Volkov, O. Y.; Dyuzhikov, I. N.; Galiev, R. R.; Ponomarev, D. S.; Khabibullin, R. A.
Title Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser Type Journal Article
Year 2021 Publication Optical Engineering Abbreviated Journal Optical Engineering
Volume (down) 60 Issue 8 Pages 1-8
Keywords HEB, terahertz pulse generation, terahertz pulse detection, QCL, quantum cascade laser, superconducting hot electron bolometer
Abstract Quantum cascade lasers (QCL) are widely adopted as prominent and easy-to-use solid-state sources of terahertz radiation. Yet some applications require generation and detection of very sharp and narrow terahertz-range pulses with a specific spectral composition. We have studied time-resolved light-current (L–I) characteristics of multimode THz QCL operated with a fast ramp of the injection current. Detection of THz pulses was carried out using an NbN superconducting hot-electron bolometer with the time constant of the order of 1 ns while the laser bias current was swept during a single driving pulse. A nonmonotonic behavior of the L–I characteristic with several visually separated subpeaks was found. This behavior is associated with the mode competition in THz QCL cavity, which we confirm by L–I measurements with use of an external Fabry–Perot interferometer for a discrete mode selection. We also have demonstrated the possibility to control the L–I shape with suppression of one of the subpeaks by simply adjusting the off-axis parabolic mirror for optimal optical alignment for one of the laser modes. The developed technique paves the way for rapid characterization of pulsed THz QCLs for further studies of the possibilities of using this approach in remote sensing.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/1.Oe.60.8.082019 Serial 1260
Permanent link to this record
 

 
Author Smirnov, A. V.; Karmantsov, M. S.; Smirnov, K. V.; Vakhtomin, Y. B.; Masterov, D. V.; Tarkhov, M. A.; Pavlov, S. A.; Parafin, A. E.
Title Terahertz response of thin-film YBCO bolometers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume (down) 57 Issue 12 Pages 1716-1719
Keywords YBCO HEB
Abstract The bolometric response of high-temperature thin-film YBCO superconducting detectors to an electromagnetic radiation with a frequency of 2.5 THz is measured for the first time. The minimum value of the noise-equivalent power of the detectors is 3.5 × 10−9 W/Hz−−−√. The feasibility of further increasing the sensitivity of the detectors is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1817
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G.
Title Ultrafast superconducting single-photon detector Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume (down) 56 Issue 15 Pages 1670-1680
Keywords SSPD, SNSPD
Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 607
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R.
Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume (down) 54 Issue 2-3 Pages 315-326
Keywords NbN SSPD, SNSPD
Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1434
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume (down) 51 Issue 9-10 Pages 1447-1458
Keywords NbN SSPD, SNSPD
Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1488
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume (down) 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I.
Title Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
Year 2010 Publication Semicond. Abbreviated Journal Semicond.
Volume (down) 44 Issue 11 Pages 1427-1429
Keywords 2DEG, AlGaAs/GaAs heterostructures mixers
Abstract The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no
Call Number Serial 1216
Permanent link to this record
 

 
Author Kitaeva, G. K.; Kornienko, V. V.; Kuznetsov, K. A.; Pentin, I. V.; Smirnov, K. V.; Vakhtomin, Y. B.
Title Direct detection of the idler THz radiation generated by spontaneous parametric down-conversion Type Journal Article
Year 2019 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume (down) 44 Issue 5 Pages 1198-1201
Keywords HEB applications
Abstract We study parametric down-conversion (PDC) of optical laser radiation in the strongly frequency non-degenerate regime which is promising for the generation of quantum-correlated pairs of extremely different spectral ranges, the optical and the terahertz (THz) ones. The possibility to detect tenuous THz-frequency photon fluxes generated under low-gain spontaneous PDC is demonstrated using a hot electron bolometer. Then experimental dependences of the THz radiation power on the detection angle and on the pump intensity are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:30821747 Approved no
Call Number Serial 1801
Permanent link to this record
 

 
Author Divochiy, A.; Misiaszek, M.; Vakhtomin, Y.; Morozov, P.; Smirnov, K.; Zolotov, P.; Kolenderski, P.
Title Single photon detection system for visible and infrared spectrum range Type Journal Article
Year 2018 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume (down) 43 Issue 24 Pages 6085-6088
Keywords
Abstract We demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452-2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous parametric downconversion, where one photon was in the visible range and the other was in the infrared range. We measured a signal to noise ratio as high as 4x10(4) in our detection setting. A photon detection efficiency as high as 64% at 1550 nm and 15% at 2300 nm was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0146-9592 ISBN Medium
Area Expedition Conference
Notes https://arxiv.org/abs/1807.04273 Approved no
Call Number Serial 1227
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R.
Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume (down) 43 Issue Pages 1334-1337
Keywords NbN SSPD, SNSPD
Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1450
Permanent link to this record