toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zwiller, V.; Aichele, T.; Seifert, W.; Persson, J.; Benson, O. url  doi
openurl 
  Title Generating visible single photons on demand with single InP quantum dots Type Journal Article
  Year 2003 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume (down) 82 Issue 10 Pages 1509-1511  
  Keywords single photon, quantum dot, InP  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 503  
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R. url  doi
openurl 
  Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
  Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume (down) 54 Issue 2-3 Pages 315-326  
  Keywords NbN SSPD, SNSPD  
  Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1434  
Permanent link to this record
 

 
Author Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A. doi  openurl
  Title Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors Type Journal Article
  Year 2009 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal  
  Volume (down) 47 Issue Pages 10701  
  Keywords SSPD, SNSPD  
  Abstract We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1062  
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J. url  doi
openurl 
  Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume (down) 13 Issue 4 Pages 934-943  
  Keywords SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1424  
Permanent link to this record
 

 
Author Heeres, R.W.; Dorenbos, S.N.; Koene, B.; Solomon, G.S.; Kouwenhoven, L.P.; Zwiller, V. doi  openurl
  Title On-Chip Single Plasmon Detection Type Journal Article
  Year 2010 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume (down) 10 Issue Pages 661-664  
  Keywords optical antennas; SSPD; Single surface plasmons; superconducting detectors; semiconductor quantum dots; nanophotonics  
  Abstract Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: