toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pekker, David; Shah, Nayana; Sahu, Mitrabhanu; Bezryadin, Alexey; Goldbart, Paul M. doi  openurl
  Title Stochastic dynamics of phase-slip trains and superconductive-resistive switching in current-biased nanowires Type Journal Article
  Year 2009 Publication Phys. Rev. B Abbreviated Journal  
  Volume (down) 80 Issue Pages 214525 (1 to 17)  
  Keywords superconducting nanowire, phase-slip, order parameter, HEB distributed model, HEB model  
  Abstract Superconducting nanowires fabricated via carbon-nanotube templating can be used to realize and study quasi-one-dimensional superconductors. However, measurement of the linear resistance of these nanowires have been inconclusive in determining the low-temperature behavior of phase-slip fluctuations, both quantal and thermal. Thus, we are motivated to study the nonlinear current-voltage characteristics in current-biased nanowires and the stochastic dynamics of superconductive-resistive switching, as a way of probing phase-slip events. In particular, we address the question: can a single phase-slip event occurring somewhere along the wire—during which the order-parameter fluctuates to zero—induce switching, via the local heating it causes? We explore this and related issues by constructing a stochastic model for the time evolution of the temperature in a nanowire whose ends are maintained at a fixed temperature. We derive the corresponding master equation as a tool for evaluating and analyzing the mean switching time at a given value of current (smaller than the depairing critical current). The model indicates that although, in general, several phase-slip events are necessary to induce switching via a thermal runaway, there is indeed a regime of temperatures and currents in which a single event is sufficient. We carry out a detailed comparison of the results of the model with experimental measurements of the distribution of switching currents, and provide an explanation for the rather counterintuitive broadening of the distribution width that is observed upon lowering the temperature. Moreover, we identify a regime in which the experiments are probing individual phase-slip events, and thus offer a way of unearthing and exploring the physics of nanoscale quantum tunneling of the one-dimensional collective quantum field associated with the superconducting order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 923  
Permanent link to this record
 

 
Author Dauler, Eric; Kerman, Andrew; Robinson, Bryan; Yang, Joel; Voronov, Boris; Goltsman, Gregory; Hamilton, Scott; Berggren, Karl url  doi
openurl 
  Title Photon-number-resolution with sub-30-ps timing using multi-element superconducting nanowire single photon detectors Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.  
  Volume (down) 56 Issue 2 Pages 364-373  
  Keywords PNR SSPD; SNSPD; photon-number-resolution; superconducting nanowire single photon detector; timing jitter; system detection efficiency  
  Abstract A photon-number-resolving detector based on a four-element superconducting nanowire single photon detector is demonstrated to have sub-30-ps resolution in measuring the arrival time of individual photons. This detector can be used to characterize the photon statistics of non-pulsed light sources and to mitigate dead-time effects in high-speed photon counting applications. Furthermore, a 25% system detection efficiency at 1550 nm was demonstrated, making the detector useful for both low-flux source characterization and high-speed photon-counting and quantum communication applications. The design, fabrication and testing of this detector are described, and a comparison between the measured and theoretical performance is presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 700  
Permanent link to this record
 

 
Author Romijn, J.; Klapwijk, T. M.; Renne, M. J.; Mooij, J. E. doi  openurl
  Title Critical pair-breaking current in superconducting aluminum strips far below Tc Type Journal Article
  Year 1982 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (down) 26 Issue 7 Pages 3648-3655  
  Keywords superconducting nanowire  
  Abstract Critical currents of narrow, thin aluminum strips have been measured as a function of temperature. For the smallest samples uniformity of the current density is obtained over a large temperature range. Hence the intrinsic limit on the currentcarrying capacity of the superconductor was measured outside the Ginzburg-Landau -regime. The experimental values are compared with recent theoretical predictions by Kupriyanov and Lukichev. An approximate method of solving their equations is given, the results of which agree with the exact solution to within 1%. Experimental data are in excellent agreement with theoretical predictions. The absolute values agree if one assumes a ρl value of 4×10–16 Ωm2 with vF=1.3×106 m/s. This value for ρl is the same as that found from measurements of the anomalous skin effect but differs from values extracted from size-effect-limited resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 925  
Permanent link to this record
 

 
Author Sahu, Mitrabhanu; Bae, Myung-Ho; Rogachev, Andrey; Pekker, David; Wei, Tzu-Chieh; Shah, Nayana; Goldbart, Paul M.; Bezryadin, Alexey doi  openurl
  Title Individual topological tunnelling events of a quantum field probed through their macroscopic consequences Type Journal Article
  Year 2009 Publication Nature Phys. Abbreviated Journal Nature Phys.  
  Volume (down) 5 Issue Pages 503-508  
  Keywords phase slips, superconducting nanowires  
  Abstract Phase slips are topological fluctuations that carry the superconducting order-parameter field between distinct current-carrying states. Owing to these phase slips, superconducting nanowires acquire electrical resistance. In such wires, it is well known that at higher temperatures phase slips occur through the process of thermal barrier-crossing by the order-parameter field. At low temperatures, the general expectation is that phase slips should proceed through quantum tunnelling events, which are known as quantum phase slips. However, resistive measurements have produced evidence both for and against the occurrence of quantum phase slips. Here, we report evidence for the observation of individual quantum phase-slip events in homogeneous ultranarrow wires at high bias currents. We accomplish this through measurements of the distribution of switching currents for which the width exhibits a rather counter-intuitive, monotonic increase with decreasing temperature. Importantly, measurements show that in nanowires with larger critical currents, quantum fluctuations dominate thermal fluctuations up to higher temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 928  
Permanent link to this record
 

 
Author Елезов, М. С.; Щербатенко, М. Л.; Сыч, Д. В.; Гольцман, Г. Н. url  openurl
  Title Практические особенности работы оптоволоконного квантового приемника Кеннеди Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO  
  Volume (down) Issue Pages 303-305  
  Keywords Kennedy quantum receiver, fiber, quantum optics, standard quantum limit, superconducting nanowire single-photon detector, coherent detection  
  Abstract Мы рассматриваем практические особенности работы квантового приемника на основе схемы Кеннеди, собранного из стандартных оптоволоконных элементов и сверхпроводникового детектора одиночных фотонов. Приемник разработан для различения двух фазовомодулированных когерентных состояний света на длине волны 1,5 микрона в непрерывном режиме с частотой модуляции 200 КГц и уровнем ошибок различения примерно в два раза ниже стандартного квантового предела.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1288 Approved no  
  Call Number Serial 1283  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: