|   | 
Details
   web
Records
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N.
Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume (down) 92 Issue 10 Pages 104503 (1 to 9)
Keywords SSPD, SNSPD
Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1343
Permanent link to this record
 

 
Author Delacour, C.; Claudon, J.; Poizat, J.-Ph.; Pannetier, B.; Bouchiat, V.; de Lamaestre, R. Espiau; Villegier, J.-C.; Tarkhov, M.; Korneev, A.; Voronov, B.; Gol'tsman, G.
Title Superconducting single photon detectors made by local oxidation with an atomic force microscope Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 90 Issue 19 Pages 191116 (1 t0 3)
Keywords SSPD
Abstract The authors present a fabrication technique of superconducting single photon detectors made by local oxidation of niobium nitride ultrathin films. Narrow superconducting meander lines are obtained by direct writing of insulating niobium oxynitride lines through the films using voltage-biased tip of an atomic force microscope. Due to the 30nm resolution of the lithographic technique, the filling factor of the meander line can be made substantially higher than detector of similar geometry made by electron beam lithography, thus leading to increased quantum efficiency. Single photon detection regime of these devices is demonstrated at 4.2K.

The authors thank J.-P. Maneval for stimulating discussions. This work has been partly supported by ACI Nanoscience from French Ministry of Research, D.G.A., by Grant No. 02.445.11.7434 of Russian Ministry of Education and Science, and by the European Commission under project “SINPHONIA,” Contract No. NMP4-CT-2005-16433.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 423
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W.
Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume (down) 89 Issue 10 Pages 104513 (1 to 7)
Keywords NbN SSPD, SNSPD
Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1367
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S.
Title Coherent flux tunneling through NbN nanowires Type Journal Article
Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume (down) 88 Issue 22 Pages 220506 (1 to 5)
Keywords NbN nanowires
Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1369
Permanent link to this record
 

 
Author Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Bohi, P.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.; Pearlman, A.; Cross, A.; Komissarov, I.; Verevkin, A.; Sobolewski, R.
Title Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies Type Journal Article
Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 88 Issue 26 Pages 261113 (1 to 3)
Keywords SSPD, SNSPD
Abstract We have fabricated and tested a two-channel single-photon detector system based on two fiber-coupled superconducting single-photon detectors (SSPDs). Our best device reached the system quantum efficiency of 0.3% in the 1540-nm telecommunication wavelength with a fiber-to-detector coupling factor of about 30%. The photoresponse consisted of 2.5-ns-wide voltage pulses with a rise time of 250ps and timing jitter below 40ps. The overall system response time, measured as a second-order, photon cross-correlation function, was below 400ps. Our SSPDs operate at 4.2K inside a liquid-helium Dewar, but their optical fiber inputs and electrical outputs are at room temperature. Our two-channel detector system should find applications in practical quantum cryptography and in antibunching-type quantum correlation measurements.

The authors would like to thank Dr. Marc Currie for his assistance in early time-resolved photoresponse measurements and Professor Atac Imamoglu for his support. This work was supported by the Polish Ministry of Science under Project No. 3 T11B 052 26 (Warsaw), RFBR 03-02-17697 and INTAS 03-51-4145 grants (Moscow), CRDF Grant No. RE2-2531-MO-03 (Moscow), RE2-2529-MO-03 (Moscow and Rochester), and US AFOSR FA9550-04-1-0123 (Rochester). Additional funding was provided by the grants from the MIT Lincoln Laboratory and BBN Technologies Corp.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1449
Permanent link to this record
 

 
Author Sobolewski, Roman; Xu, Ying; Zheng, Xuemei; Williams, Carlo; Zhang, Jin; Verevkin, Aleksandr; Chulkova, Galina; Korneev, Alexander; Lipatov, Andrey; Okunev, Oleg; Smirnov, Konstantin; Gol'tsman, Gregory N.
Title Spectral sensitivity of the NbN single-photon superconducting detector Type Journal Article
Year 2002 Publication IEICE Trans. Electron. Abbreviated Journal IEICE Trans. Electron.
Volume (down) E85-C Issue 3 Pages 797-802
Keywords NbN SSPD, SNSPD
Abstract We report our studies on the spectral sensitivity of superconducting NbN thin-film single-photon detectors (SPD's) capable of GHz counting rates of visible and near-infrared photons. In particular, it has been shown that a NbN SPD is sensitive to 1.55-µm wavelength radiation and can be used for quantum communication. Our SPD's exhibit experimentally measured intrinsic quantum efficiencies from 20% at 800 nm up to 1% at 1.55-µm wavelength. The devices demonstrate picosecond response time (<100 ps, limited by our readout system) and negligibly low dark counts. Spectral dependencies of photon counting of continuous-wave, 0.4-µm to 3.5-µm radiation, and 0.63-µm, 1.33-µm, and 1.55-µm laser-pulsed radiations are presented for the single-stripe-type and meander-type devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1531
Permanent link to this record
 

 
Author Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman
Title Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors Type Journal Article
Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 84 Issue 26 Pages 5338-5340
Keywords SSPD, NEP, QE
Abstract We have measured the quantum efficiencysQEd, GHz counting rate, jitter, and noise-equivalentpowersNEPdof nanostructured NbN superconducting single-photon detectorssSSPDsdin thevisible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-typedevices(total area 10310mm2), operating at 4.2 K, exhibit an experimental QE of up to 20% inthe visible range and,10% at 1.3 to 1.55mm wavelength and are potentially sensitive up tomidinfrareds,10mmdradiation. The SSPD counting rate was measured to be above 2 GHz withjitter,18 ps, independent of the wavelength. The devices’ NEP varies from,10−17W/Hz1/2for1.55mm photons to,10−20W/Hz1/2for visible radiation. Lowering the SSPD operatingtemperature to 2.3 K significantly enhanced its performance, by increasing the QE to,20% andlowering the NEP level to,3310−22W/Hz1/2, both measured at 1.26mm wavelength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 532
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A.
Title Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range Type Journal Article
Year 2002 Publication Appl. Phys. Lett. Abbreviated Journal
Volume (down) 80 Issue 25 Pages 4687-4689
Keywords NbN SSPD, SNSPD, QE
Abstract We report our studies on spectral sensitivity of meander-type, superconducting NbN thin-film single-photon detectors (SPDs), characterized by GHz counting rates of visible and near-infrared photons and negligible dark counts. Our SPDs exhibit experimentally determined quantum efficiencies ranging from ∼0.2% at the 1.55 μm wavelength to ∼70% at 0.4 μm. Spectral dependences of the detection efficiency (DE) at the 0.4 to 3.0-μm-wavelength range are presented. The exponential character of the DE dependence on wavelength, as well as its dependence versus bias current, is qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width superconducting stripes. The DE values of large-active-area NbN SPDs in the visible range are high enough for modern quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 331
Permanent link to this record
 

 
Author Glejm, A. V.; Anisimov, A. A.; Asnis, L. N.; Vakhtomin, Yu. B.; Divochiy, A. V.; Egorov, V. I.; Kovalyuk, V. V.; Korneev, A. A.; Kynev, S. M.; Nazarov, Yu. V.; Ozhegov, R. V.; Rupasov, A. V.; Smirnov, K. V.; Smirnov, M. A.; Goltsman, G. N.; Kozlov, S. A.
Title Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s Type Journal Article
Year 2014 Publication Bulletin of the Russian Academy of Sciences. Physics Abbreviated Journal
Volume (down) 78 Issue 3 Pages 171-175
Keywords SSPD, SNSPD, applications
Abstract An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-8738 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 940
Permanent link to this record
 

 
Author Korneev, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits Type Journal Article
Year 2003 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering
Volume (down) 69 Issue 2-4 Pages 274-278
Keywords NbN SSPD, SNSPD, applications
Abstract We present a new, simple to manufacture superconducting single-photon detector operational in the range from ultraviolet to mid-infrared radiation wavelengths. The detector combines GHz counting rate, high quantum efficiency and very low level of dark (false) counts. At 1.3–1.5 μm wavelength range our detector exhibits a quantum efficiency of 5–10%. The detector photoresponse voltage pulse duration was measured to be about 150 ps with jitter of 35 ps and both of them were limited mostly by our measurement equipment. In terms of quantum efficiency, dark counts level, speed of operation the detector surpasses all semiconductor counterparts and was successfully applied for CMOS integrated circuits diagnostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1511
Permanent link to this record