toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Delacour, C.; Claudon, J.; Poizat, J.-Ph.; Pannetier, B.; Bouchiat, V.; de Lamaestre, R. Espiau; Villegier, J.-C.; Tarkhov, M.; Korneev, A.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Superconducting single photon detectors made by local oxidation with an atomic force microscope Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume (down) 90 Issue 19 Pages 191116 (1 t0 3)  
  Keywords SSPD  
  Abstract The authors present a fabrication technique of superconducting single photon detectors made by local oxidation of niobium nitride ultrathin films. Narrow superconducting meander lines are obtained by direct writing of insulating niobium oxynitride lines through the films using voltage-biased tip of an atomic force microscope. Due to the 30nm resolution of the lithographic technique, the filling factor of the meander line can be made substantially higher than detector of similar geometry made by electron beam lithography, thus leading to increased quantum efficiency. Single photon detection regime of these devices is demonstrated at 4.2K.

The authors thank J.-P. Maneval for stimulating discussions. This work has been partly supported by ACI Nanoscience from French Ministry of Research, D.G.A., by Grant No. 02.445.11.7434 of Russian Ministry of Education and Science, and by the European Commission under project “SINPHONIA,” Contract No. NMP4-CT-2005-16433.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 423  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Gol'tsman, G.; Hübers, H.-W. url  doi
openurl 
  Title Effect of magnetic field on the photon detection in thin superconducting meander structures Type Journal Article
  Year 2014 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (down) 89 Issue 10 Pages 104513 (1 to 7)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have studied the influence of an externally applied magnetic field on the photon and dark count rates of meander-type niobium nitride superconducting nanowire single-photon detectors. Measurements have been performed at a temperature of 4.2 K, and magnetic fields up to 250 mT have been applied perpendicularly to the meander plane. While photon count rates are field independent at weak applied fields, they show a strong dependence at fields starting from approximately ±25 mT. This behavior, as well as the magnetic field dependence of the dark count rates, is in good agreement with the recent theoretical model of vortex-assisted photon detection and spontaneous vortex crossing in narrow superconducting lines. However, the local reduction of the superconducting free energy due to photon absorption, which is the fitting parameter in the model, increases much slower with the photon energy than the model predicts. Furthermore, changes in the free-energy during photon counts and dark counts depend differently on the current that flows through the meander. This indicates that photon counts and dark counts occur in different parts of the meander.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1367  
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S. url  doi
openurl 
  Title Coherent flux tunneling through NbN nanowires Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume (down) 88 Issue 22 Pages 220506 (1 to 5)  
  Keywords NbN nanowires  
  Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1369  
Permanent link to this record
 

 
Author Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Bohi, P.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.; Pearlman, A.; Cross, A.; Komissarov, I.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies Type Journal Article
  Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume (down) 88 Issue 26 Pages 261113 (1 to 3)  
  Keywords SSPD, SNSPD  
  Abstract We have fabricated and tested a two-channel single-photon detector system based on two fiber-coupled superconducting single-photon detectors (SSPDs). Our best device reached the system quantum efficiency of 0.3% in the 1540-nm telecommunication wavelength with a fiber-to-detector coupling factor of about 30%. The photoresponse consisted of 2.5-ns-wide voltage pulses with a rise time of 250ps and timing jitter below 40ps. The overall system response time, measured as a second-order, photon cross-correlation function, was below 400ps. Our SSPDs operate at 4.2K inside a liquid-helium Dewar, but their optical fiber inputs and electrical outputs are at room temperature. Our two-channel detector system should find applications in practical quantum cryptography and in antibunching-type quantum correlation measurements.

The authors would like to thank Dr. Marc Currie for his assistance in early time-resolved photoresponse measurements and Professor Atac Imamoglu for his support. This work was supported by the Polish Ministry of Science under Project No. 3 T11B 052 26 (Warsaw), RFBR 03-02-17697 and INTAS 03-51-4145 grants (Moscow), CRDF Grant No. RE2-2531-MO-03 (Moscow), RE2-2529-MO-03 (Moscow and Rochester), and US AFOSR FA9550-04-1-0123 (Rochester). Additional funding was provided by the grants from the MIT Lincoln Laboratory and BBN Technologies Corp.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1449  
Permanent link to this record
 

 
Author Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman url  doi
openurl 
  Title Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors Type Journal Article
  Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume (down) 84 Issue 26 Pages 5338-5340  
  Keywords SSPD, NEP, QE  
  Abstract We have measured the quantum efficiencysQEd, GHz counting rate, jitter, and noise-equivalentpowersNEPdof nanostructured NbN superconducting single-photon detectorssSSPDsdin thevisible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-typedevices(total area 10310mm2), operating at 4.2 K, exhibit an experimental QE of up to 20% inthe visible range and,10% at 1.3 to 1.55mm wavelength and are potentially sensitive up tomidinfrareds,10mmdradiation. The SSPD counting rate was measured to be above 2 GHz withjitter,18 ps, independent of the wavelength. The devices’ NEP varies from,10−17W/Hz1/2for1.55mm photons to,10−20W/Hz1/2for visible radiation. Lowering the SSPD operatingtemperature to 2.3 K significantly enhanced its performance, by increasing the QE to,20% andlowering the NEP level to,3310−22W/Hz1/2, both measured at 1.26mm wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 532  
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A. doi  openurl
  Title Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range Type Journal Article
  Year 2002 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume (down) 80 Issue 25 Pages 4687-4689  
  Keywords NbN SSPD, SNSPD, QE  
  Abstract We report our studies on spectral sensitivity of meander-type, superconducting NbN thin-film single-photon detectors (SPDs), characterized by GHz counting rates of visible and near-infrared photons and negligible dark counts. Our SPDs exhibit experimentally determined quantum efficiencies ranging from ∼0.2% at the 1.55 μm wavelength to ∼70% at 0.4 μm. Spectral dependences of the detection efficiency (DE) at the 0.4 to 3.0-μm-wavelength range are presented. The exponential character of the DE dependence on wavelength, as well as its dependence versus bias current, is qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width superconducting stripes. The DE values of large-active-area NbN SPDs in the visible range are high enough for modern quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 331  
Permanent link to this record
 

 
Author Glejm, A. V.; Anisimov, A. A.; Asnis, L. N.; Vakhtomin, Yu. B.; Divochiy, A. V.; Egorov, V. I.; Kovalyuk, V. V.; Korneev, A. A.; Kynev, S. M.; Nazarov, Yu. V.; Ozhegov, R. V.; Rupasov, A. V.; Smirnov, K. V.; Smirnov, M. A.; Goltsman, G. N.; Kozlov, S. A. doi  openurl
  Title Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s Type Journal Article
  Year 2014 Publication Bulletin of the Russian Academy of Sciences. Physics Abbreviated Journal  
  Volume (down) 78 Issue 3 Pages 171-175  
  Keywords SSPD, SNSPD, applications  
  Abstract An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1062-8738 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ kovalyuk @ Serial 940  
Permanent link to this record
 

 
Author Korneev, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits Type Journal Article
  Year 2003 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering  
  Volume (down) 69 Issue 2-4 Pages 274-278  
  Keywords NbN SSPD, SNSPD, applications  
  Abstract We present a new, simple to manufacture superconducting single-photon detector operational in the range from ultraviolet to mid-infrared radiation wavelengths. The detector combines GHz counting rate, high quantum efficiency and very low level of dark (false) counts. At 1.3–1.5 μm wavelength range our detector exhibits a quantum efficiency of 5–10%. The detector photoresponse voltage pulse duration was measured to be about 150 ps with jitter of 35 ps and both of them were limited mostly by our measurement equipment. In terms of quantum efficiency, dark counts level, speed of operation the detector surpasses all semiconductor counterparts and was successfully applied for CMOS integrated circuits diagnostics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9317 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1511  
Permanent link to this record
 

 
Author Shein, K. V.; Zarudneva, A. A.; Emel’yanova, V. O.; Logunova, M. A.; Chichkov, V. I.; Sobolev, A.S.; Zav’yalov, V. V.; Lehtinen, J. S.; Smirnov, E. O.; Korneeva, Y. P.; Korneev, A. A.; Arutyunov, K. Y. url  doi
openurl 
  Title Superconducting microstructures with high impedance Type Journal Article
  Year 2020 Publication Phys. Solid State Abbreviated Journal Phys. Solid State  
  Volume (down) 62 Issue 9 Pages 1539-1542  
  Keywords superconducting channels, SIS, inetic inductance, tunneling contacts, high impedance  
  Abstract The transport properties of two types of quasi-one-dimensional superconducting microstructures were investigated at ultra-low temperatures: the narrow channels close-packed in the shape of meander, and the chains of tunneling contacts “superconductor-insulator-superconductor.” Both types of the microstructures demonstrated high value of high-frequency impedance and-or the dynamic resistance. The study opens up potential for using of such structures as current stabilizing elements with zero dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7834 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1789  
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochiy, A.; Tarkhov, M.; Ryabchun, S.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol'tsman, G.; Polonsky, S. url  doi
openurl 
  Title Ultrathin NbN film superconducting single-photon detector array Type Conference Article
  Year 2007 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume (down) 61 Issue Pages 1081-1085  
  Keywords SSPD array  
  Abstract We report on the fabrication process of the 2 × 2 superconducting single-photon detector (SSPD) array. The SSPD array is made from ultrathin NbN film and is operated at liquid helium temperatures. Each detector is a nanowire-based structure patterned by electron beam lithography process. The advances in fabrication technology allowed us to produce highly uniform strips and preserve superconducting properties of the unpatterned film. SSPD exhibit up to 30% quantum efficiency in near infrared and up to 1% at 5-μm wavelength. Due to 120 MHz counting rate and 18 ps jitter, the time-domain multiplexing read-out is proposed for large scale SSPD arrays. Single-pixel SSPD has already found a practical application in non-invasive testing of semiconductor very-large scale integrated circuits. The SSPD significantly outperformed traditional single-photon counting avalanche diodes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 408  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: