|   | 
Details
   web
Records
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume (down) 88 Issue 11 Pages 6758-6767
Keywords HEB mixer, charge imbalance, HF current distribution
Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 306
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S.
Title Coherent flux tunneling through NbN nanowires Type Journal Article
Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume (down) 88 Issue 22 Pages 220506 (1 to 5)
Keywords NbN nanowires
Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1369
Permanent link to this record
 

 
Author Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Bohi, P.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.; Pearlman, A.; Cross, A.; Komissarov, I.; Verevkin, A.; Sobolewski, R.
Title Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies Type Journal Article
Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 88 Issue 26 Pages 261113 (1 to 3)
Keywords SSPD, SNSPD
Abstract We have fabricated and tested a two-channel single-photon detector system based on two fiber-coupled superconducting single-photon detectors (SSPDs). Our best device reached the system quantum efficiency of 0.3% in the 1540-nm telecommunication wavelength with a fiber-to-detector coupling factor of about 30%. The photoresponse consisted of 2.5-ns-wide voltage pulses with a rise time of 250ps and timing jitter below 40ps. The overall system response time, measured as a second-order, photon cross-correlation function, was below 400ps. Our SSPDs operate at 4.2K inside a liquid-helium Dewar, but their optical fiber inputs and electrical outputs are at room temperature. Our two-channel detector system should find applications in practical quantum cryptography and in antibunching-type quantum correlation measurements.

The authors would like to thank Dr. Marc Currie for his assistance in early time-resolved photoresponse measurements and Professor Atac Imamoglu for his support. This work was supported by the Polish Ministry of Science under Project No. 3 T11B 052 26 (Warsaw), RFBR 03-02-17697 and INTAS 03-51-4145 grants (Moscow), CRDF Grant No. RE2-2531-MO-03 (Moscow), RE2-2529-MO-03 (Moscow and Rochester), and US AFOSR FA9550-04-1-0123 (Rochester). Additional funding was provided by the grants from the MIT Lincoln Laboratory and BBN Technologies Corp.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1449
Permanent link to this record
 

 
Author Kerman, A. J.; Dauler, E. A.; Keicher, W. E.; Yang, J. K. W.; Berggren, K. K.; Gol’tsman, G.; Voronov, B.
Title Kinetic-inductance-limited reset time of superconducting nanowire photon counters Type Journal Article
Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 88 Issue 11 Pages 111116 (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract We investigate the recovery of superconducting NbN-nanowire photon counters after detection of an optical pulse at a wavelength of 1550nm, and present a model that quantitatively accounts for our observations. The reset time is found to be limited by the large kinetic inductance of these nanowires, which forces a tradeoff between counting rate and either detection efficiency or active area. Devices of usable size and high detection efficiency are found to have reset times orders of magnitude longer than their intrinsic photoresponse time.

The authors acknowledge D. Oates and W. Oliver (MIT Lincoln Laboratory), S.W. Nam, A. Miller, and R. Hadfield (NIST) and R. Sobolewski, A. Pearlman, and A. Verevkin (University of Rochester) for helpful discussions and technical assistance. This work made use of MIT’s shared scanning-electron-beam-lithography facility in the Research Laboratory of Electronics. This work is sponsored by the United States Air Force under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1453
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Vahtomin, Yu.; Maslennikov, S.; Antipov, S.; Voronov, B.; Gol'tsman, G.
Title Direct detection effect in small volume hot electron bolometer mixers Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume (down) 86 Issue 16 Pages 163503 (1 to 3)
Keywords HEB, mixer, direct detection effect
Abstract We measure the direct detection effect in a small volume (0.15μm×1μm×3.5nm)(0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electronbolometermixer at 1.6THz1.6THz. We find that the small signal sensitivity of the receiver is underestimated by 35% due to the direct detection effect and that the optimal operating point is shifted to higher bias voltages when using calibration loads of 300K300K and 77K77K. Using a 200GHz200GHzbandpass filter at 4.2K4.2K the direct detection effect virtually disappears. This has important implications for the calibration procedure of these receivers in real telescope systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 377
Permanent link to this record