toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brida, G.; Genovese, M.; Ruo Berchera, I. openurl 
  Title Experimental realization of sub-shot-noise quantum imaging Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume (down) 4 Issue 4 Pages 227-230  
  Keywords fromIPMRAS  
  Abstract The properties of quantum states have led to the development of new technologies, ranging from quantum information to quantum metrology. A recent field of research to emerge is quantum imaging, which aims to overcome the limits of classical imaging by making use of the spatial properties of quantum states of light . In particular, quantum correlations between twin beams represent a fundamental resource for these studies. One of the most interesting proposed schemes takes advantage of the spatial quantum correlations between parametric down-conversion light beams to realize sub-shot-noise imaging of weak absorbing objects, leading ideally to noise-free imaging. Here, we present the first experimental realization of this scheme, showing its potential to achieve a larger signal-to-noise ratio than classical imaging methods. This work represents the starting point for this quantum technology, which we anticipate will have applications when there is a requirement for low-photon-flux illumination (for example for use with biological samples).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 771  
Permanent link to this record
 

 
Author Kok, Pieter openurl 
  Title Quantum optics: Entangled photons report for duty Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume (down) 4 Issue 8 Pages 504-505  
  Keywords fromIPMRAS  
  Abstract Entangled photons are a key ingredient in optical quantum technologies, but researchers have so far been unable to produce a single pair of entangled photons. Now, two groups from China and Austria independently report just that, with a technique that avoids the need to infer entanglement from detection signatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 772  
Permanent link to this record
 

 
Author Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth; Braunstein, Samuel L. openurl 
  Title Continuous-variable quantum cryptography using two-way quantum communication Type Journal Article
  Year 2008 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume (down) 4 Issue 9 Pages 726-730  
  Keywords fromIPMRAS  
  Abstract Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a `hardware solution' for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 798  
Permanent link to this record
 

 
Author Wei, Jian; Olaya, David; Karasik, Boris S.; Pereverzev, Sergey V.; Sergeev, Andrei V.; Gershenson, Michael E. url  doi
openurl 
  Title Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
  Year 2008 Publication Nature Nanotechnology Abbreviated Journal Nature Nanotech  
  Volume (down) 3 Issue 8 Pages 496-500  
  Keywords HEB, Ti/NbN, single terahertz photons, detection  
  Abstract The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;

second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 576  
Permanent link to this record
 

 
Author Hadfield, Robert H. doi  openurl
  Title Single-photon detectors for optical quantum information applications Type Journal Article
  Year 2009 Publication Nature Photonics Abbreviated Journal Nature Photonics  
  Volume (down) 3 Issue Pages 696-705  
  Keywords SPD  
  Abstract The past decade has seen a dramatic increase in interest in new single-photon detector technologies. A major cause of this trend has undoubtedly been the push towards optical quantum information applications such as quantum key distribution. These new applications place extreme demands on detector performance that go beyond the capabilities of established single-photon detectors. There has been considerable effort to improve conventional photon-counting detectors and to transform new device concepts into workable technologies for optical quantum information applications. This Review aims to highlight the significant recent progress made in improving single-photon detector technologies, and the impact that these developments will have on quantum optics and quantum information science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 678  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: