toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. doi  openurl
  Title Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection Type Journal Article
  Year (down) 2013 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 21 Issue 7 Pages 8904-8915  
  Keywords SSPD, SNSPD, lidar, SSPD applications, SNSPD applications  
  Abstract This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1053  
Permanent link to this record
 

 
Author Marsili, F.; Verma, V. B.; Stern, J. A.; Harrington, S.; Lita, A. E.; Gerrits, T.; Vayshenker, I.; Baek, B.; Shaw, M. D.; Mirin, R. P.; Nam, S. W. doi  openurl
  Title Detecting single infrared photons with 93% system efficiency Type Journal Article
  Year (down) 2013 Publication Nat. Photon. Abbreviated Journal  
  Volume 7 Issue 3 Pages 210-214  
  Keywords SSPD quantum efficiency  
  Abstract Single-photon detectors1 at near-infrared wavelengths with high system detection efficiency (>90%), low dark count rate (<1 c.p.s.), low timing jitter (<100 ps) and short reset time (<100 ns) would enable landmark experiments in a variety of fields2, 3, 4, 5, 6. Although some of the existing approaches to single-photon detection fulfil one or two of the above specifications1, to date, no detector has met all of the specifications simultaneously. Here, we report on a fibre-coupled single-photon detection system that uses superconducting nanowire single-photon detectors7 and closely approaches the ideal performance of single-photon detectors. Our detector system has a system detection efficiency (including optical coupling losses) greater than 90% in the wavelength range λ = 1,520–1,610 nm, with a device dark count rate (measured with the device shielded from any background radiation) of ~1 c.p.s., timing jitter of ~150 ps full-width at half-maximum (FWHM) and reset time of 40 ns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1056  
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y. url  doi
openurl 
  Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
  Year (down) 2013 Publication J. Opt. Technol. Abbreviated Journal J. Opt. Technol.  
  Volume 80 Issue 7 Pages 435  
  Keywords SSPD, quantum efficiency  
  Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-9762 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1172  
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Seleznev, V.; Morozov, P.; Smirnov, K. url  doi
openurl 
  Title High-efficiency single-photon detectors based on NbN films Type Miscellaneous
  Year (down) 2013 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords SSPD, SNSPD  
  Abstract We present our resent results in development and testing of Superconducting Single-Photon Detectors (SSPD) with detection efficiencies greater than 85%. High values of obtained results are assigned to proposed design of the detector with integrated resonator structure, including two-layer optical cavity and anti-reflective coating (ARC).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Poster Approved no  
  Call Number Serial 1254  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Il'in, K.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Hubers, H.; Siegel, M.; Gol'tsman, G. url  doi
openurl 
  Title Effect of the wire width and magnetic field on the intrinsic detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
  Year (down) 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2200205-2200205  
  Keywords SSPD, SNSPD  
  Abstract We present thorough measurements of the intrinsic detection efficiency in the wavelength range from 350 to 2500 nm for meander-type TaN and NbN superconducting nanowire single-photon detectors with different widths of the nanowire. The width varied from 70 nm to 130 nm. The open-beam configuration allowed us to accurately normalize measured spectra and to extract the intrinsic detection efficiency. For detectors from both materials the intrinsic detection efficiency at short wavelengths amounts at 100% and gradually decreases at wavelengths larger than the specific cut-off wavelengths, which decreases with the width of the nanowire. Furthermore, we show that applying weak magnetic fields perpendicular to the meander plane decreases the smallest detectable photon flux.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1376  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: