toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shurakov, A.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Microwave stabilization of a HEB mixer in a pulse-tube cryocooler Type Journal Article
  Year (down) 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 1501504-1501504  
  Keywords NbN HEB mixers  
  Abstract We report the results of our study of the stability of an 800 GHz hot electron bolometer (HEB) mixer cooled with a pulse-tube cryocooler. Pulse-tube cryocoolers introduce temperature fluctuations as well as mechanical vibrations at a frequency of ~1 Hz, both of which can cause receiver gain fluctuations at that frequency. In our system, the motor of the cryocooler was separated from the cryostat to minimize mechanical vibrations, leaving thermal effects as the dominant source of the receiver gain fluctuations. We measured root mean square temperature variations of the 4 K stage of ~7 mK. The HEB mixer was pumped by a solid state local oscillator at 810 GHz. The root mean square current fluctuations at the low noise operating point (1.50 mV, 56.5 μA) were ~0.12 μA, and were predominantly due to thermal fluctuations. To stabilize the bias current, microwave radiation was injected to the HEB mixer. The injected power level was set by a proportional-integral-derivative controller, which completely compensates for the bias current oscillations induced by the pulse-tube cryocooler. Significant improvement in the Allan variance of the receiver output power was obtained, and an Allan time of 5 s was measured.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1372  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Il'in, K.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Hubers, H.; Siegel, M.; Gol'tsman, G. url  doi
openurl 
  Title Effect of the wire width and magnetic field on the intrinsic detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
  Year (down) 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2200205-2200205  
  Keywords SSPD, SNSPD  
  Abstract We present thorough measurements of the intrinsic detection efficiency in the wavelength range from 350 to 2500 nm for meander-type TaN and NbN superconducting nanowire single-photon detectors with different widths of the nanowire. The width varied from 70 nm to 130 nm. The open-beam configuration allowed us to accurately normalize measured spectra and to extract the intrinsic detection efficiency. For detectors from both materials the intrinsic detection efficiency at short wavelengths amounts at 100% and gradually decreases at wavelengths larger than the specific cut-off wavelengths, which decreases with the width of the nanowire. Furthermore, we show that applying weak magnetic fields perpendicular to the meander plane decreases the smallest detectable photon flux.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1376  
Permanent link to this record
 

 
Author Bulaevskii, L. N.; Graf, Matthias J.; Kogan, V. G. openurl 
  Title Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors Type Journal Article
  Year (down) 2012 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 85 Issue 1 Pages 9  
  Keywords SSPD; SNSPD; single-vortex crossing; normal-state belt  
  Abstract We argue that photon counts in a superconducting nanowire single-photon detector (SNSPD) are caused by the transition from a current-biased metastable superconducting state to the normal state. Such a transition is triggered by vortices crossing the thin and narrow superconducting strip from one edge to another due to the Lorentz force. Detector counts in SNSPDs may be caused by three processes: (a) a single incident photon with sufficient energy to break enough Cooper pairs to create a normal-state belt across the entire width of the strip (direct photon count), (b) thermally induced single-vortex crossing in the absence of photons (dark count), which at high-bias currents releases the energy sufficient to trigger the transition to the normal state in a belt across the whole width of the strip, and (c) a single incident photon of insufficient energy to create a normal-state belt but initiating a subsequent single-vortex crossing, which provides the rest of the energy needed to create the normal-state belt (vortex-assisted single-photon count). We derive the current dependence of the rate of vortex-assisted photon counts. The resulting photon count rate has a plateau at high currents close to the critical current and drops as a power law with high exponent at lower currents. While the magnetic field perpendicular to the film plane does not affect the formation of hot spots by photons, it causes the rate of vortex crossings (with or without photons) to increase. We show that by applying a magnetic field one may characterize the energy barrier for vortex crossings and identify the origin of dark counts and vortex-assisted photon counts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 733  
Permanent link to this record
 

 
Author Knee, George C.; Simmons, Stephanie; Gauger, Erik M.; Morton, John J. L.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei M.; Thewalt, Mike L. W.; Briggs, G. Andrew D.; Benjamin, Simon C. openurl 
  Title Violation of a Leggett–Garg inequality with ideal non-invasive measurements Type Journal Article
  Year (down) 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue 606 Pages 6  
  Keywords fromIPMRAS  
  Abstract The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 767  
Permanent link to this record
 

 
Author Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G. openurl 
  Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
  Year (down) 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue 625 Pages 6  
  Keywords fromIPMRAS  
  Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 768  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: