|   | 
Details
   web
Records
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year (up) 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2814-2816
Keywords NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record
 

 
Author Hoevers, H. F. C.; Bento, A. C.; Bruijn, M. P.; Gottardi, L.; Korevaar, M. A. N.; Mels, W. A.; de Korte, P. A. J.
Title Thermal fluctuation noise in a voltage biased superconducting transition edge thermometer Type Journal Article
Year (up) 2000 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 77 Issue 26 Pages 4421-4424
Keywords TES; bolometer; thermal fluctuation noise; TFN
Abstract The current noise at the output of a microcalorimeter with a voltage biased superconducting transition edge thermometer is studied in detail. In addition to the two well-known noise sources: thermal fluctuation noise from the heat link to the bath and Johnson noise from the resistive thermometer, a third noise source strongly correlated with the steepness of the thermometer is required to fit the measured noise spectra. Thermal fluctuation noise, originating in the thermometer itself, fully explains the additional noise. A simple model provides quantitative agreement between the observed and calculated noise spectra for all bias points in the superconducting transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 759
Permanent link to this record
 

 
Author Kroug, M.; Cherednichenko, S.; Choumas, M.; Merkel, H.; Kollberg, E.; Hübers, H.-W.; Richter, H.; Loudkov, D.; Voronov, B.; Gol'Tsman, G.
Title HEB quasi-optical heterodyne receiver for THz frequencies Type Conference Article
Year (up) 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 244-252
Keywords HEB mixer, NbN, MgO, conversion gain bandwidth, noise temperature
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 319
Permanent link to this record
 

 
Author Deang, Jennifer; Du, Qiang; Gunzburger, Max D.
Title Modeling and computation of random thermal fluctuations and material defects in the Ginzburg–Landau model for superconductivity Type Journal Article
Year (up) 2002 Publication J. Comp. Phys. Abbreviated Journal
Volume 181 Issue 1 Pages 45-67
Keywords noise; superconductivity; finite element methods; fluctuations.
Abstract It is well known that thermal fluctuations and material impurities affect the motion of vortices in superconductors. These effects are modeled by variants of a time-dependent Ginzburg-Landau model containing either additive or multiplicative noise. Numerical computations are presented that illustrate the effects that noise has on the dynamics of vortex nucleation and vortex motion. For an additive noise model with relatively low variances, it is found that the vortices form a quasi-steady-state lattice in which the vortex core sizes remain roughly fixed but their positions vibrate. Two multiplicative noise models are considered. For one model having relatively long-range order, the sizes of the vortex cores vary in time and from one vortex to another. Finally, for the additive noise case, we show that as the variance of the noise tends to zero, solutions of the stochastic time-dependent Ginzburg-Landau equations converge to solutions of the corresponding equations with no noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 758
Permanent link to this record
 

 
Author Khosropanah, Pourya
Title NbN and NbTiN hot electron bolometer THz mixers Type Book Whole
Year (up) 2003 Publication Chalmers University of Technology Abbreviated Journal
Volume Issue Pages
Keywords HEB mixer, hot electron bolometer mixer, NbN, NbTiN, superconducting detector, heterodyne receiver, THz mixer, submillimeter mixer, quasioptical receiver, double slot antenna, twin slot antenna, spiral antenna, receiver noise, FTS, Fourier Transform Spectrometer
Abstract The thesis reports the development of Hot Electron Bolometer (HEB) mixers for radio astronomy heterodyne receivers in THz frequency range. Part of this work is the fabrication of HEB devices, which are based on NbN or NbTiN superconducting thin films (â‰<a4>5 nm). They are integrated with wideband spiral or double-slot planar antennas. The mixer chips are incorporated into a quasi-optical receiver. The experimental part of this work focuses on the characterization of the receiver as a whole, and the HEB mixers as a part. Double side band receiver noise temperature and the IF bandwidth are reported for frequencies from 0.7 THz up to 2.6 THz. The spectrum of the direct response of HEB integrated with dierent antennas are measured using Fourier Transform Spectrometer (FTS). The effect of the bolometer size on total receiver performance and the LO power requirements is also discussed. A high-yield and reliable process for fabrication of NbN HEB mixers have been achieved. Over 100 devices with different bolometer geometry, film property and also different antennas have been fabricated and measured. The measured data enables us to discuss the impact of different parameters to the receiver overall performance.

This work has provided NbN HEB mixers to the following receivers:

TREND (Terahertz REceiver with NbN HEB Device) operating at 1.25-1.5 THz, installed in AST/RO Submillimeter Wave Telescope, Amundsen/Scott South Pole Station, in 2002-2003.

Band 6-low (1.410-1.700 THz) and 6-high (1.700-1.920 THz) of the HIFI (Heterodyne Instrument for Far Infra-red) in the Herschel Space Observatory, due to launch in 2007 by ESA (European Space Agency).

Besides, there has been continuous efforts to develop better models to explain the mixer performance more accurately. They are based on two temperature model for electrons and phonons and solving one-dimensional heat balance equations along the bolometer. The principles of these models are illustrated and the calculated results are compared with measured data.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Chalmers University of Technology Place of Publication Göteborg Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 910
Permanent link to this record