|   | 
Details
   web
Records
Author McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S.
Title Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection Type Journal Article
Year (down) 2013 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 21 Issue 7 Pages 8904-8915
Keywords SSPD, SNSPD, lidar, SSPD applications, SNSPD applications
Abstract This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1053
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Seleznev, V.; Morozov, P.; Smirnov, K.
Title High-efficiency single-photon detectors based on NbN films Type Miscellaneous
Year (down) 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords SSPD, SNSPD
Abstract We present our resent results in development and testing of Superconducting Single-Photon Detectors (SSPD) with detection efficiencies greater than 85%. High values of obtained results are assigned to proposed design of the detector with integrated resonator structure, including two-layer optical cavity and anti-reflective coating (ARC).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Poster Approved no
Call Number Serial 1254
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Il'in, K.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Hubers, H.; Siegel, M.; Gol'tsman, G.
Title Effect of the wire width and magnetic field on the intrinsic detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
Year (down) 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 23 Issue 3 Pages 2200205-2200205
Keywords SSPD, SNSPD
Abstract We present thorough measurements of the intrinsic detection efficiency in the wavelength range from 350 to 2500 nm for meander-type TaN and NbN superconducting nanowire single-photon detectors with different widths of the nanowire. The width varied from 70 nm to 130 nm. The open-beam configuration allowed us to accurately normalize measured spectra and to extract the intrinsic detection efficiency. For detectors from both materials the intrinsic detection efficiency at short wavelengths amounts at 100% and gradually decreases at wavelengths larger than the specific cut-off wavelengths, which decreases with the width of the nanowire. Furthermore, we show that applying weak magnetic fields perpendicular to the meander plane decreases the smallest detectable photon flux.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1376
Permanent link to this record
 

 
Author Bulaevskii, L. N.; Graf, Matthias J.; Kogan, V. G.
Title Vortex-assisted photon counts and their magnetic field dependence in single-photon superconducting detectors Type Journal Article
Year (down) 2012 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 85 Issue 1 Pages 9
Keywords SSPD; SNSPD; single-vortex crossing; normal-state belt
Abstract We argue that photon counts in a superconducting nanowire single-photon detector (SNSPD) are caused by the transition from a current-biased metastable superconducting state to the normal state. Such a transition is triggered by vortices crossing the thin and narrow superconducting strip from one edge to another due to the Lorentz force. Detector counts in SNSPDs may be caused by three processes: (a) a single incident photon with sufficient energy to break enough Cooper pairs to create a normal-state belt across the entire width of the strip (direct photon count), (b) thermally induced single-vortex crossing in the absence of photons (dark count), which at high-bias currents releases the energy sufficient to trigger the transition to the normal state in a belt across the whole width of the strip, and (c) a single incident photon of insufficient energy to create a normal-state belt but initiating a subsequent single-vortex crossing, which provides the rest of the energy needed to create the normal-state belt (vortex-assisted single-photon count). We derive the current dependence of the rate of vortex-assisted photon counts. The resulting photon count rate has a plateau at high currents close to the critical current and drops as a power law with high exponent at lower currents. While the magnetic field perpendicular to the film plane does not affect the formation of hot spots by photons, it causes the rate of vortex crossings (with or without photons) to increase. We show that by applying a magnetic field one may characterize the energy barrier for vortex crossings and identify the origin of dark counts and vortex-assisted photon counts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 733
Permanent link to this record
 

 
Author Henrich, D.; Dorner,S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M.
Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content Type Journal Article
Year (down) 2012 Publication Abbreviated Journal J. Appl. Phys.
Volume 112 Issue Pages
Keywords SSPD, SNSPD, magnetron sputtering, spectrum, NbN film, nitrogen concentration
Abstract The spectral detection efficiency and the dark count rate of superconducting nanowire

single-photon detectors (SNSPD) have been studied systematically on detectors made from thin

NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm

thick NbN films results in a decrease of the dark count rates more than two orders of magnitude

and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed

phenomena are explained by an improvement of uniformity of NbN films that has been confirmed

by a decrease of resistivity and an increase of the ratio of the measured critical current to the

depairing current. The latter factor is considered as the most crucial for both the cut-off

wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria

for material properties to optimize SNSPD in the infrared spectral region. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4757625]
Address
Corporate Author D. Henrich, S. Dorner, M. Hofherr, K. Il'in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, M. Siegel Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ seleznev @ Serial 877
Permanent link to this record