|   | 
Details
   web
Records
Author Ejrnaes, M.; Cristiano, R.; Quaranta, O.; Pagano, S.; Gaggero, A.; Mattioli, F.; Leoni, R.; Voronov, B.; Gol’tsman, G.
Title A cascade switching superconducting single photon detector Type Journal Article
Year (down) 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 91 Issue 26 Pages 262509 (1 to 3)
Keywords SSPD, SNSPD, parallel-wire
Abstract We have realized superconducting single photon detectors with reduced inductance and increased signal pulse amplitude. The detectors are based on a parallel connection of ultrathin NbN nanowires with a common bias inductance. When properly biased, an absorbed photon induces a cascade switch of all the parallel wires generating a signal pulse amplitude of 2mV. The parallel wire configuration lowers the detector inductance and reduces the response time well below 1ns.

This work was performed in the framework of the EU project “SINPHONIA” NMP4-CT-2005-016433.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1418
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B.
Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year (down) 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 395-398
Keywords NbN HEB mixers, noise temperature
Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1429
Permanent link to this record
 

 
Author Kerman, A. J.; Dauler, E. A.; Yang, J. K. W.; Rosfjord, K. M.; Anant, V.; Berggren, K. K.; Gol’tsman, G. N.; Voronov, B. M.
Title Constriction-limited detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
Year (down) 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 90 Issue 10 Pages 101110 (1 to 3)
Keywords SSPD, SNSPD
Abstract We investigate the source of the large variations in the observed detection efficiencies of superconducting nanowire single-photon detectors between many nominally identical devices. Through both electrical and optical measurements, we infer that these variations arise from “constrictions:” highly localized regions of the nanowires where the effective cross-sectional area for superconducting current is reduced. These constrictions limit the bias-current density to well below its critical value over the remainder of the wire, and thus prevent the detection efficiency from reaching the high values that occur in these devices when they are biased near the critical current density.

This work is sponsored by the United States Air Force under Contract No. FA8721-05-C-0002.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1433
Permanent link to this record
 

 
Author Kitaygorsky, J.; Komissarov, I.; Jukna, A.; Pan, D.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.R.
Title Dark counts in nanostructured nbn superconducting single-photon detectors and bridges Type Journal Article
Year (down) 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 275-278
Keywords SSPD; SNSPD
Abstract We present our studies on dark counts, observed as transient voltage pulses, in current-biased NbN superconducting single-photon detectors (SSPDs), as well as in ultrathin (~4 nm), submicrometer-width (100 to 500 nm) NbN nanobridges. The duration of these spontaneous voltage pulses varied from 250 ps to 5 ns, depending on the device geometry, with the longest pulses observed in the large kinetic-inductance SSPD structures. Dark counts were measured while the devices were completely isolated (shielded by a metallic enclosure) from the outside world, in a temperature range between 1.5 and 6 K. Evidence shows that in our two-dimensional structures the dark counts are due to the depairing of vortex-antivortex pairs caused by the applied bias current. Our results shed some light on the vortex dynamics in 2D superconductors and, from the applied point of view, on intrinsic performance of nanostructured SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1248
Permanent link to this record
 

 
Author Semenov, A.; Richter, H.; Smirnov, A.; Günther, B.; Hübers, H.-W.; Il’in, K.; Siegel, M.; Gol’tsman, G.; Drakinskiy, V.; Merkel, H.; Karamarkovic, J.
Title Development of HEB mixers for GREAT and for security screening Type Abstract
Year (down) 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 184
Keywords NbN HEB mixers, GREAT
Abstract We report the study on the quasioptical coupling efficiency and the gain bandwidth of NbN hot-electron bolometer mixers developed for the 4.7 THz channel of the German receiver for Astronomy at THz-frequencies (GREAT) and for security screening at subterahertz frequencies. Radiation coupling efficiency and directive properties of integrated lens antennas with log-spiral, log-periodic and double-slot planar feeds coupled to a hot-electron bolometer were experimentally studied at frequencies from 1 THz to 6 THz and compared with simulations based on the method of moments and the physical-optics ray tracing. For all studied antennas the modeled spectral dependence of the coupling efficiency fits to the experimental data obtained with both Fourier transform spectroscopy and noise temperature measurements only if the complex impedance of the bolometer is explicitly taken into account. Our experimental data did not indicate any noticeable contribution of the quantum noise to the system noise temperature. The experimentally observed deviation of the beam pattern from the model prediction increases with frequency and is most likely due to a non- ideality of the presently used lenses. Study of the intermediate frequency mixer gain at local oscillator (LO) frequencies between 2.5 THz and 0.3 THz showed an increase of the gain bandwidth at low LO frequencies that was understood as the contribution of the direct interaction of magnetic vortices with the radiation field. We have found that the non- homogeneous hot-spot model more adequately describes variation of the intermediate frequency bandwidth with the applied local oscillator power than any of uniform mixer models. The state-of-the-day performance of the GREAT 4.7-THz channel and the 0.8-THz security scanner will be presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1420
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Rieger, E.; Dorenbos, P.; Zwiller, V.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.N.; Kitaygorsky, J.; Pan, D.; Pearlman, A.; Cross, A.; Komissarov, I.; Sobolewski, R.
Title Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements Type Conference Article
Year (down) 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6583 Issue Pages 65830J (1 to 11)
Keywords NbN SSPD, SNSPD, superconducting single-photon detectors, single-photon detectors, fiber-coupled optical detectors, quantum correlations, superconducting devices
Abstract We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured ( 100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room temperature, and we can reach the coupling efficiency of up to  33%. The system quantum efficiency, measured as the ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver’s optical and electrical connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with timing jitter of less than 40 ps.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Cryptography
Notes Approved no
Call Number Serial 1431
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R.
Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
Year (down) 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 54 Issue 2-3 Pages 315-326
Keywords NbN SSPD, SNSPD
Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1434
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.
Title Fluctuations in two-dimensional superconducting NbN nanobridges and nanostructures meanders Type Abstract
Year (down) 2007 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume 52 Issue 1 Pages L9.00013
Keywords
Abstract We have observed fluctuations, manifested as sub-nanosecond to nanosecond transient, millivolt-amplitude voltage pulses, generated in two-dimensional NbN nanobridges, as well as in extended superconducting meander nanostructures, designed for single photon counting. Both nanobridges and nano-stripe meanders were biased at currents close to the critical current and measured in a range of temperatures from 1.5 to 8 K. During the tests, the devices were blocked from all incoming radiation by a metallic enclosure and shielded from any external magnetic fields. We attribute the observed spontaneous voltage pulses to the Kosterlitz-Thouless-type fluctuations, where the high enough applied bias current reduces the binding energy of vortex-antivortex pairs and, subsequently, thermal fluctuations break them apart causing the order parameter to momentarily reduce to zero, which in turn causes a transient voltage pulse. The duration of the voltage pulses depended on the device geometry (with the high-kinetic inductance meander structures having longer, nanosecond, pulses) while their rate was directly related to the biasing current as well as temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1027
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Krieg, J.-M.; Voronov, B.; Gol'tsman, G.; Desmaris, V.
Title Gain bandwidth of NbN hot-electron bolometer terahertz mixers on 1.5 μm Si3N4 / SiO2 membranes Type Journal Article
Year (down) 2007 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 101 Issue 12 Pages 124508 (1 to 6)
Keywords HEB, mixer, membrane
Abstract The gain bandwidth of NbN hot-electron bolometer terahertz mixers on electrically thin Si3N4/SiO2 membranes was experimentally investigated and compared with that of HEB mixers on bulk substrates. A gain bandwidth of 3.5 GHz is achieved on bulk silicon, whereas the gain bandwidth is reduced down to 0.6–0.9 GHz for mixers on 1.5 μm Si3N4/SiO2 membranes. We show that application of a MgO buffer layer on the membrane extends the gain bandwidth to 3 GHz. The experimental data were analyzed using the film-substrate acoustic mismatch approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 560
Permanent link to this record
 

 
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C.
Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
Year (down) 2007 Publication Proc. International conference on microwave and millimeter wave technology Abbreviated Journal Proc. ICMMT
Volume Issue Pages 1-3
Keywords HEB, mixer, gain bandwidth
Abstract In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.
Address
Corporate Author Thesis
Publisher Place of Publication Builin Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 575
Permanent link to this record