toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pernice, W. H. P.; Schuck, C.; Minaeva, O.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. url  doi
openurl 
  Title High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits Type Journal Article
  Year 2012 Publication Nat. Commun. Abbreviated Journal (down) Nat. Commun.  
  Volume 3 Issue Pages 1325 (1 to 10)  
  Keywords waveguide SSPD  
  Abstract Ultrafast, high-efficiency single-photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. However, imperfect modal matching and finite photon absorption rates have usually limited their maximum attainable detection efficiency. Here we demonstrate superconducting nanowire detectors atop nanophotonic waveguides, which enable a drastic increase of the absorption length for incoming photons. This allows us to achieve high on-chip single-photon detection efficiency up to 91% at telecom wavelengths, repeatable across several fabricated chips. We also observe remarkably low dark count rates without significant compromise of the on-chip detection efficiency. The detectors are fully embedded in scalable silicon photonic circuits and provide ultrashort timing jitter of 18 ps. Exploiting this high temporal resolution, we demonstrate ballistic photon transport in silicon ring resonators. Our direct implementation of a high-performance single-photon detector on chip overcomes a major barrier in integrated quantum photonics.  
  Address Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23271658; PMCID:PMC3535416 Approved no  
  Call Number Serial 1375  
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
  Year 2002 Publication NASA/ADS Abbreviated Journal (down) NASA/ADS  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.  
  Address Monterey, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002  
  Notes id.37 Approved no  
  Call Number Serial 1534  
Permanent link to this record
 

 
Author Semenov, Alexei; Hübers, Heinz-Wilhelm; Engel, Andreas; Gol'tsman, Gregory N. url  openurl
  Title Background limited superconducting quantum detector for astronomy Type Abstract
  Year 2002 Publication NASA/ADS Abbreviated Journal (down) NASA/ADS  
  Volume Issue Pages  
  Keywords SQD  
  Abstract We present the concept of the superconducting quantum detector for astronomy. Response to a single absorbed photon appears due to successive formation of a normal spot and phase-slip-centers in a narrow strip carrying sub-critical supercurrent. The detector simultaneously has a moderate energy resolution and a variable cut-off wavelength depending on both the material used and operation conditions. We simulated performance of the background-limited direct detector having the 100- micrometer cut-off wavelength. Low dark count rate will allow to realize 10-21 W Hz-1/2 noise equivalent power at 4 K background radiation. The intrinsic recovery time of the counter is rather determined by diffusion of nonequilibrium electrons, thus, thermal fluctuations do not hamper energy resolution of the detector. Provided an appropriate readout technique, the resolution should be better than 1/20 at 50- micrometer wavelength. Planar layout and relatively simple technology favor integration of the detector into an array.  
  Address Monterey, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, held 1-3 April 2002  
  Notes id.62 Approved no  
  Call Number Serial 1535  
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Ptitsina, N. G.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen', E. V.; Krasnosvobodtsev, S. I. url  openurl
  Title Electron-phonon scattering rate in impure NbC films Type Abstract
  Year 1998 Publication NASA/ADS Abbreviated Journal (down) NASA/ADS  
  Volume Issue Pages Y35.08  
  Keywords NbC films  
  Abstract The study of the electron-phonon interaction in thin (20 nm) NbC films with electron mean free path l=2-13 nm gives an evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference ~T^2-term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5 – 10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence T^n with the exponent n = 2.5-3. This behaviour is well explained by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference American Physical Society, Annual March Meeting, March 16-20, 1998 Los Angeles, CA  
  Notes Approved no  
  Call Number Serial 1591  
Permanent link to this record
 

 
Author Marksteiner, M.; Divochiy, A.; Sclafani, M.; Haslinger, P.; Ulbricht, H.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title A superconducting NbN detector for neutral nanoparticles Type Journal Article
  Year 2009 Publication Nanotechnol. Abbreviated Journal (down) Nanotechnol.  
  Volume 20 Issue 45 Pages 455501  
  Keywords SSPD; SNSPD; *Electric Conductivity; Microscopy, Electron, Scanning; Nanoparticles/*chemistry/ultrastructure; Nanotechnology/*methods; *Photons  
  Abstract We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.  
  Address University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. markus.arndt@univie.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19822928 Approved no  
  Call Number Serial 1239  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconductivity in highly disordered NbN nanowires Type Journal Article
  Year 2016 Publication Nanotechnol. Abbreviated Journal (down) Nanotechnol.  
  Volume 27 Issue 47 Pages 47lt02 (1 to 8)  
  Keywords NbN nanowires  
  Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.  
  Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27782000 Approved no  
  Call Number Serial 1332  
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Fedorov, G. E.; Moskotin, M. V.; Yagodkin, D. I.; Seliverstov, S. V.; Goltsman, G. N.; Yu Kuntsevich, A.; Rybin, M. G.; Obraztsova, E. D.; Leiman, V. G.; Shur, M. S.; Otsuji, T.; Ryzhii, V. I. url  doi
openurl 
  Title Manifestation of plasmonic response in the detection of sub-terahertz radiation by graphene-based devices Type Journal Article
  Year 2018 Publication Nanotechnol. Abbreviated Journal (down) Nanotechnol.  
  Volume 29 Issue 24 Pages 245204 (1 to 8)  
  Keywords single layer graphene, graphene nanoribbons  
  Abstract We report on the sub-terahertz (THz) (129-450 GHz) photoresponse of devices based on single layer graphene and graphene nanoribbons with asymmetric source and drain (vanadium and gold) contacts. Vanadium forms a barrier at the graphene interface, while gold forms an Ohmic contact. We find that at low temperatures (77 K) the detector responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. Graphene nanoribbon devices display a similar pattern, albeit with a lower responsivity.  
  Address Physics Department, Moscow State University of Education, Moscow 119991, Russia. National Research Center 'Kurchatov Institute', 123182, Moscow, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29553479 Approved no  
  Call Number Serial 1308  
Permanent link to this record
 

 
Author Sclafani, M.; Marksteiner, M.; Keir, F. M. L.; Divochiy, A.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title Sensitivity of a superconducting nanowire detector for single ions at low energy Type Journal Article
  Year 2012 Publication Nanotechnol. Abbreviated Journal (down) Nanotechnol.  
  Volume 23 Issue 6 Pages 065501 (1 to 5)  
  Keywords NbN SSPD, SNSPD, superconducting single ion detector, SSID, SNSID  
  Abstract We report on the characterization of a superconducting nanowire detector for ions at low kinetic energies. We measure the absolute single-particle detection efficiency eta and trace its increase with energy up to eta = 100%. We discuss the influence of noble gas adsorbates on the cryogenic surface and analyze their relevance for the detection of slow massive particles. We apply a recent model for the hot-spot formation to the incidence of atomic ions at energies between 0.2 and 1 keV. We suggest how the differences observed for photons and atoms or molecules can be related to the surface condition of the detector and we propose that the restoration of proper surface conditions may open a new avenue for SSPD-based optical spectroscopy on molecules and nanoparticles.  
  Address Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22248823 Approved no  
  Call Number Serial 1380  
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Perepelitsa, A.; Ryabchun, S.; Kaurova, N.; Shurakov, A.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  doi
openurl 
  Title Ag2S QDs/Si heterostructure-based ultrasensitive SWIR range detector Type Journal Article
  Year 2020 Publication Nanomaterials (Basel) Abbreviated Journal (down) Nanomaterials (Basel)  
  Volume 10 Issue 5 Pages 1-12  
  Keywords detector; quantum dots; short-wave infrared range; silicon  
  Abstract In the 20(th) century, microelectronics was revolutionized by silicon-its semiconducting properties finally made it possible to reduce the size of electronic components to a few nanometers. The ability to control the semiconducting properties of Si on the nanometer scale promises a breakthrough in the development of Si-based technologies. In this paper, we present the results of our experimental studies of the photovoltaic effect in Ag2S QD/Si heterostructures in the short-wave infrared range. At room temperature, the Ag2S/Si heterostructures offer a noise-equivalent power of 1.1 x 10(-10) W/ radicalHz. The spectral analysis of the photoresponse of the Ag2S/Si heterostructures has made it possible to identify two main mechanisms behind it: the absorption of IR radiation by defects in the crystalline structure of the Ag2S QDs or by quantum QD-induced surface states in Si. This study has demonstrated an effective and low-cost way to create a sensitive room temperature SWIR photodetector which would be compatible with the Si complementary metal oxide semiconductor technology.  
  Address Laboratory of nonlinear optics, Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, Kazan 420029, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32365694; PMCID:PMC7712218 Approved no  
  Call Number Serial 1151  
Permanent link to this record
 

 
Author Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P. url  doi
openurl 
  Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type Journal Article
  Year 2016 Publication Nano Lett. Abbreviated Journal (down) Nano Lett.  
  Volume 16 Issue 11 Pages 7085-7092  
  Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity  
  Abstract Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.  
  Address Institute of Physics, University of Munster , 48149 Munster, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27759401 Approved no  
  Call Number Serial 1208  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: