toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Yagoubov, P.; Gol'tsman, G.; Voronov, B.; Svechnikov, S.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekström, H.; Semenov, A.; Gousev, Yu.; Renk, K. url  openurl
  Title Quasioptical phonon-cooled NbN hot-electron bolometer mixer at THz frequencies Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 303-317  
  Keywords NbN HEB mixers  
  Abstract (up) In our experiments we tested phonon-cooled hot-electron bolometer (HEB) quasioptical mixer based on spiral antenna designed for 0.5-1.2 THz frequency band and fabricated on sapphire, Si-coated sapphire and high resistivity silicon substrates. HEB devices were produced from thin superconducting NbN film 3.5-6 nm thick with the critical temperature of about 11-12 K. For these devices we achieved the receiver noise temperature T R (DSB) = 3000 K in the 500-700 GHz frequency range and an IF bandwidth of 3-4 GHz. Prelimanary measurements at frequencies 1-1.2 THz resulted the receiver noise temperature about 9000 K (DSB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1614  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E. url  doi
openurl 
  Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
  Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 73 Issue 19 Pages 2814-2816  
  Keywords NbN HEB mixers, noise temperature, local oscillator power  
  Abstract (up) In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 911  
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
  Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal Proc. 28th European Microwave Conf.  
  Volume 1 Issue Pages 294-299  
  Keywords NbN HEB mixers  
  Abstract (up) In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference 28th European Microwave Conference  
  Notes Approved no  
  Call Number Serial 1580  
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Stability of heterodyne terahertz receivers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 6 Pages 064904 (1 to 9)  
  Keywords NbN HEB mixers  
  Abstract (up) In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1444  
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B. url  doi
openurl 
  Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 395-398  
  Keywords NbN HEB mixers, noise temperature  
  Abstract (up) In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1429  
Permanent link to this record
 

 
Author Goltsman, G. N. url  doi
openurl 
  Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
  Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7236 Issue Pages 72360D (1 to 11)  
  Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films  
  Abstract (up) In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1403  
Permanent link to this record
 

 
Author Tarkhov, M.; Morozov, D.; Mauskopf, P.; Seleznev, V.; Korneev, A.; Kaurova, N.; Rubtsova, I.; Minaeva, O.; Voronov, B.; Goltsman, G. url  openurl
  Title Single photon counting detector for THz radioastronomy Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 119-122  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) In this paper we present the results of the research on the superconducting NbN-ultrathin-film single- photon detectors (SSPD) which are capable to detect single quanta in middle IR range. The detection mechanism is based on the hotspot formation in quasi-two-dimensional superconducting structures upon photon absorption. Spectral measurements showed that up to 5.7 gm wavelength (52 THz) the SSPD exhibits single-photon sensitivity. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of -4% at 60 THz. Although further decrease of the operation temperature far below 1 K does not lead to any significant increase of quantum efficiency. We expect that the improvement of the SSPD's performance at reduced operation temperature will make SSPD a practical detector with high characteristics for much lower THz frequencies as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1438  
Permanent link to this record
 

 
Author Ryabchun, S.; Korneev, A.; Matvienko, V.; Smirnov, K.; Kouminov, P.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol’tsman, G. N. url  openurl
  Title Superconducting single photon detectors array based on hot electron phenomena Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 242-247  
  Keywords NbN SSPD arrays, SNSPD  
  Abstract (up) In this paper we propose to use time domain multiplexing for large format arrays of superconducting single photon detectors (SSPDs) of the terahertz, visible and infrared frequency ranges based on ultrathin superconducting NbN films. Effective realization of time domain multiplexing for SSPD arrays is possible due to a short electric pulse of the SSPD as response to radiation quantum absorption, picosecond jitter and extremely low noise equivalent power (NEP). We present experimental results of testing 2×2 arrays in the infrared waveband. The measured noise equivalent power in the infrared and expected for the terahertz waveband is 10 – 21 WHz -1/2 . The best quantum efficiency (QE) of SSPD is 50% at 1.3 µm wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1493  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
  Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 8 Pages 085013 (1 to 5)  
  Keywords NbN HEB mixers  
  Abstract (up) In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1358  
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Wilsher, K.; Lo, W.; Okunev, O.; Korneev, A.; Kouminov, P.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title A superconducting single-photon detector for CMOS IC probing Type Conference Article
  Year 2003 Publication Proc. 16-th LEOS Abbreviated Journal Proc. 16-th LEOS  
  Volume 2 Issue Pages 602-603  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) In this paper, a novel, time-resolved, NbN-based, superconducting single-photon detector (SSPD) has been developed for probing CMOS integrated circuits (ICs) using photon emission timing analysis (PETA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003.  
  Notes Approved no  
  Call Number Serial 1510  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: