toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title Noise temperature measurements of NbN phonon-cooled hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 236-241  
  Keywords HEB mixer, NbN, direct detection effect  
  Abstract We present the results of noise temperature measurements of NbN phonon-cooled HEB mixers based on a 3.5 nm NbN film deposited on a high-resistivity Si substrate with a 200 nm – thick MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 µm x 0.2 µm active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. We also present the results of direct detection contribution to the measured Y-factor and of a possible error of noise temperature calculation. This error was more than 8% for the mixer with in-plane dimensions of 2.4 x 0.16 µm 2 at the optimal noise temperature point. The use of a mesh filter enabled us to avoid the effect of direct detection and decrease optical losses by 0.5 dB. The paper is concluded by the investigation results of the mixer polarization response. It was shown that the polarization can differ from the circular one at 3.8 THz by more than 2 dB.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Northampton, Massachusetts, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 344  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers Type Journal Article
  Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 11 Pages 1958-1960  
  Keywords NbN HEB mixers  
  Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. We show experimentally that both the receiver noise temperature and the gain bandwidth can be improved by more than a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature TN,DSB=950 K

at 2.5 THz and 4.3 K, uncorrected for losses in the optics. At the same bias point, we obtain an IF gain bandwidth of 6 GHz.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 352  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Loudkov, D. N. url  doi
openurl 
  Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
  Year 2003 Publication Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 46 Issue 8/9 Pages 604-617  
  Keywords NbN HEB mixers  
  Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes UDC 537.312.62 Approved no  
  Call Number Serial 472  
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W. url  doi
openurl 
  Title Ultimate performance of a superconducting quantum detector Type Journal Article
  Year 2003 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.  
  Volume 21 Issue 3 Pages 171-178  
  Keywords NbN SSPD, SNSPD  
  Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 534  
Permanent link to this record
 

 
Author Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. url  openurl
  Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI  
  Volume 9 Issue Pages 154-159  
  Keywords NbN HEB mixers  
  Abstract  
  Address (up)  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 547  
Permanent link to this record
 

 
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M. url  openurl
  Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages CThM8  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors  
  Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1517  
Permanent link to this record
 

 
Author Schwaab, G.W.; Sirmain, G.; Schubert, J.; Hubers, H.-W.; Gol'tsman, G.; Cherednichenko, S.; Verevkin, A.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Investigation of NbN phonon-cooled HEB mixers at 2.5 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4233-4236  
  Keywords NbN HEB mixers  
  Abstract The development of superconducting hot electron bolometric (HEB) mixers has been a big step forward in the direction of quantum noise limited mixer performance at THz frequencies. Such mixers are crucial for the upcoming generation of airborne and spaceborne THz heterodyne receivers. In this paper we report on new results on a phonon-cooled NbN HEB mixer using e-beam lithography. The superconducting film is 3 nm thick. The mixer is 0.2 μm long and 1.5 μm wide and it is integrated in a spiral antenna on a Si substrate. The device is quasi-optically coupled through a Si lens and a dielectric beam combiner to the radiation of an optically pumped FIR ring gas laser cavity. The performance of the mixer at different THz frequencies from 0.69 to 2.55 THz with an emphasis on 2.52 THz is demonstrated. At 2.52 THz minimum DSB noise temperatures of 4200 K have been achieved at an IF of 1.5 GHz and a bandwidth of 40 MHz with the mixer mounted in a cryostat and a 0.8 m long signal path in air.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 550  
Permanent link to this record
 

 
Author Meledin, Denis; Pavolotsky, Alexey; Desmaris, Vincent.; Lapkin, Igor; Risacher, Christophe; Perez, Victor; Henke, Douglas; Nystrom, Olle; Sundin, Erik; Dochev, Dimitar; Pantaleev, Miroslav; Fredrixon, Mathias; Strandberg, Magnus; Voronov, Boris; Goltsman, Gregory; Belitsky, Victor url  doi
openurl 
  Title A 1.3-THz balanced waveguide HEB mixer for the APEX telescope Type Journal Article
  Year 2009 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 57 Issue 1 Pages 89-98  
  Keywords HEB, mixer, waveguide, balanced, NbN  
  Abstract In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25–1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90×180 μm). We present details on the mixer design and measurement results, including receiver noise performance, stability and “first-light” at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 554  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages 683-689  
  Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Wei, Jian; Olaya, David; Karasik, Boris S.; Pereverzev, Sergey V.; Sergeev, Andrei V.; Gershenson, Michael E. url  doi
openurl 
  Title Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
  Year 2008 Publication Nature Nanotechnology Abbreviated Journal Nature Nanotech  
  Volume 3 Issue 8 Pages 496-500  
  Keywords HEB, Ti/NbN, single terahertz photons, detection  
  Abstract The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;

second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
 
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: