toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Tong, C.-Y. Edward; Kawamura, Jonathan; Todd, R. Hunter; Papa, D. Cosmo; Blundell, Raymond.; Smith, Michael; Patt, Ferdinand; Gol'tsman, Gregory; Gershenzon, Eugene url  openurl
  Title Successful operation of a 1 THz NbN hot-electron bolometer receiver Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 49-59  
  Keywords NbN HEB mixers, applications  
  Abstract A phonon-cooled NbN superconductive hot-electron bolometer receiver covering the frequency range 0.8-1.04 THz has successfully been used for astronomical observation at the Sub-Millimeter Telescope Observatory on Mount Graham, Arizona. This waveguide heterodyne receiver is a modified version of our fixed-tuned 800 GHz HEB receiver to allow for operation beyond 1 THz. The measured noise temperature of this receiver is about 1250 K at 0.81 THz, 560 K at 0.84 THz, and 1600 K at 1.035 THz. It has a 1 GHz wide IF bandwidth, centered at 1.8 GHz. This receiver has recently been used to detect the CO (9-8) molecular line emission at 1.037 THz in the Orion nebula. This is the first time a ground-based heterodyne receiver has been used to detect a celestial source above 1 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 303  
Permanent link to this record
 

 
Author Arutyunov, K. Y.; Ramos-Alvarez, A.; Semenov, A. V.; Korneeva, Y. P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconductivity in highly disordered NbN nanowires Type Journal Article
  Year 2016 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 27 Issue 47 Pages (down) 47lt02 (1 to 8)  
  Keywords NbN nanowires  
  Abstract The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c approximately (1-T/T c)(3/2). We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short 'weak links' with slightly reduced local critical temperature T c. Hence, one may conclude that an 'exotic' intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.  
  Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathematics,109028, Moscow, Russia. P L Kapitza Institute for Physical Problems RAS, Moscow, 119334, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27782000 Approved no  
  Call Number Serial 1332  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
  Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.  
  Volume Issue Pages (down) 47-50  
  Keywords NbN HEB mixers  
  Abstract  
  Address Charlottesville, Virginia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1601  
Permanent link to this record
 

 
Author Svechnikov, S.; Verevkin, A.; Voronov, B.; Menschikov, E.; Gershenzon, E.; Gol'tsman, G. url  openurl
  Title Quasioptical phonon-cooled NbN hot electron bolometer mixers at 0.5-1.1 THz Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 45-51  
  Keywords NbN HEB mixers  
  Abstract The noise performance of a receiver incorporating spiral antenna coupled NbN phonon-cooled superconducting hot electron bolometric mixer is measured from 450 GHz to 1200 GHz. The mixer element is thin (thickness nm) NbN 1.5 pm wide and 0.2 i.um long film fabricated by lift-off e-beam lithography on high-resistive silicon substrate. The noise of the receiver temperature is 1000 K at 800-900 GHz, 1200 K at 950 GHz, and 1600 K at 1.08 THz. The required (absorbed) local-oscillator power is —20 nW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1586  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N. url  openurl
  Title Terahertz heterodyne array based on NbN HEB mixers Type Abstract
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (down) 43  
  Keywords NbN HEB mixers array  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1411  
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
  Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology  
  Volume 42 Issue 1 Pages (down) 41-47  
  Keywords NbN HEB mixers, anti-reflection coating  
  Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1548  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  openurl
  Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 39-48  
  Keywords NbN HEB mixers  
  Abstract We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 305  
Permanent link to this record
 

 
Author Tretyakov, I.; Maslennikov, S.; Semenov, A.; Safir, O.; Finkel, M.; Ryabchun, S.; Kaurova, N.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. url  openurl
  Title Impact of operating conditions on noise and gain bandwidth of NbN HEB mixers Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 39  
  Keywords NbN HEB mixers  
  Abstract Hot-electron bolometer mixers (HEB’s) are the most promising devices as mixing element for terahertz spectroscopy and astronomy at frequencies beyond 1.4 THz. They have a low noise temperature and low demands on local oscillator (LO) power. 1,2 An important limitation is the IF bandwidth, of the order of a few GHz, and which in principle depends on energy relaxation due to electron- phonon processes and on diffusion-cooling. It has been proposed by Prober that a reduction in length of the HEB would lead to an increased bandwidth. 3 This appeared to be achieved by Tretyakov et al by measuring the gain bandwidth close to the critical temperature of the NbN. 2 Unfortunately, the noise bandwidth of similar devices operated at temperatures around 4.2 K appear not depend on the length. The fundamental problem to be addressed is the position-dependent superconducting state of the HEB- devices under operating conditions, which determines the conditions for the cooling of the hot quasiparticles. Some progress has been made by Barends et al in a semi-empirical model to describe the I,V curves under operating conditions at a bath temperature around 4.2 K. 4 In more recent work Vercruyssen et al have analyzed the I,V curve, without any LO-equivalent bias, of a model NSN system. 5 This work suggests that the most appropriate model for an HEB under operating conditions is that of a potential-well in the superconducting gap in the center of the NbN, analogous the bimodal superconducting state described by Vercruyssen et al. Hot quasiparticles in the well can not diffuse out and can only cool by electron-phonon processes, those with higher energies than the heights of the walls of the well can diffuse out. Using this working hypothesis we have carried out experiments on a sub-micrometer NbN bridge connected to a gold (Au) planar spiral antenna. An in situ process is used to deposit Au on NbN. The Au is removed in the center to define the uncovered NbN, which will act as the superconducting mixer itself. The antenna is deposited on the remaining Au layer on the NbN. The Au contacts suppress the energy gap of the NbN film located underneath the gold layer 7,8 . The measured resistive transition is shown in Fig.1. It clearly shows a T c of the bilayer at 6.2 K and the resistive transition of the NbN itself around 9 K. In addition we show the measured noise bandwidth (red squares) for different bath temperatures. Clearly the noise bandwidth increases strongly by increasing the bath temperature from 5 K to 8 K, up to 13 GHz. We interpret this pattern as evidence for improved out-diffusion of hot electrons due to normal banks and a shallow superconducting potential well compared to k B T. As expected the noise temperature in this regime is much bigger than when biased at 4.2 K. R EFERENCES 1 W. Zhang, P. Khosropanah, J. R. Gao, E. L. Kollberg, K. S. Yngvesson, T. Bansal, R. Barends, and T. M. Klapwijk Appl. Phys. Lett. 96, 111113, (2010). 2 Ivan Tretyakov, Sergey Ryabchun, Matvey Finkel, Anna Maslennikova, Natalia Kaurova, Anastasia Lobastova, Boris Voronov, and Gregory Gol’tsman Appl. Phys. Lett. 98, 033507 (2011). 3 D. E. Prober, Appl. Phys. Lett. 62, 2119 (1992). 4 R. Barends, M. Hajenius, J. R. Gao, and T. M. Klapwijk, Appl. Phys. Lett. 87, 263506 (2005). 5 N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, J. P. Pekola, and T. M. Klapwijk Physical Review B 85, 224503 (2012).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1159  
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Sobolewski, Roman; Minaeva, O.; Kaurova, N.; Korneev, A.; Voronov, B.; Milostnaya, I.; Gol'Tsman, Gregory url  openurl
  Title Nanosecond, transient resistive state in two-dimensional superconducting stripes Type Abstract
  Year 2006 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting  
  Volume Issue Pages (down) H38.13  
  Keywords NbN stripes  
  Abstract We have observed, nanosecond-in-duration, transient voltage pulses, generated across two-dimensional (2-D) NbN stripes (width: 100--500 nm; thickness: 3.5--10 nm) of various lengths (1--500 μm), when the wires were completely isolated from the outside world, biased at currents close to the critical current, and kept at temperatures below the mean-field critical temperature Tco. In 2-D superconducting films, at temperatures below the Kosterlitz-Thouless transition, all vortices are bound and the resistance is zero. However, these vortices can get unbound when a large enough transport current is applied. The latter results in a transient resistive state, which manifests itself as spontaneous, 2.5--8-ns-long voltage pulses with the amplitude corresponding to the unbinding potential of a vortex pair. In our 100-nm-wide stripes, we have also observed the formation of phase slip centers (PSCs) at temperatures close to Tco, and a mixture of PSCs and unbound vortex-antivortex pairs at low temperatures.  
  Address Baltimore, MD  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1454  
Permanent link to this record
 

 
Author Bell, Matthew; Sergeev, Andrei; Goltsman, Gregory; Bird, Jonathan; Verevkin, Aleksandr url  openurl
  Title Transition-edge sensors based on superconducting nanowires Type Abstract
  Year 2006 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting  
  Volume Issue Pages (down) B38.00001  
  Keywords NbN nanowire TES  
  Abstract We present our experimental study of superconducting NbN nanowire-based sensor. The responsivity of the sensor is strongly affected by the superconducting transition width of the nanostructure, which, in turn, is determined by the phase slip centers (PCSs) dynamics. The fluctuations and noise properties of the sensor are also discussed, as well as the devices' behavior at high magnetic fields. The ultimate performance of the sensor and prospects of the devices will be discussed, as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1455  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: