toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory url  openurl
  Title A digital terahertz power meter based on an NbN thin film Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 170  
  Keywords waveguide NbN HEB mixers  
  Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1366  
Permanent link to this record
 

 
Author Beck, Matthias; Leiderer, Paul; Kabanov, Viktor V.; Gol'tsman, Gregory; Helm, Manfred; Demsar, Jure url  openurl
  Title Energy-gap dynamics of a superconductor NbN studied by time-resolved terahertz spectroscopy Type Abstract
  Year 2012 Publication INIS Abbreviated Journal INIS  
  Volume 45 Issue 12 Pages 1-3  
  Keywords NbN energy gap  
  Abstract Using time-resolved terahertz (THz) spectroscopy we performed direct studies of the photoinduced suppression and recovery of the SC gap in a conventional SC NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the important microscopic constants: the Cooper pair-breaking rate via phonon absorption and the bare quasiparticle recombination rate. From the latter we were able to extract the dimensionless electron-phonon coupling constant, λ=1.1±0.1, in excellent agreement with theoretical estimates. The technique also allowed us to determine the absorbed energy required to suppress SC, which in NbN equals the thermodynamic condensation energy (in cuprates the two differ by an order of magnitude). Finally, we present the first studies of dynamics following resonant excitation with intense narrow band THz pulses tuned to above and below the superconducting gap. These suggest an additional process, particularly pronounced near Tc, that could be attributed to amplification of SC via effective quasiparticle cooling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1383  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G. url  doi
openurl 
  Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
  Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz  
  Volume Issue Pages 1-2  
  Keywords NbN HEB mixer, superlattice  
  Abstract We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 6105209 Serial 1384  
Permanent link to this record
 

 
Author Ryabchun, S.; Smirnov, A.; Pentin, I.; Vakhtomin, Yu.; Smirnov, K.; Kaurova, N.; Voronov, B.; Goltsman, G. url  openurl
  Title Superconducting single photon detector integrated with optical cavity Type Conference Article
  Year 2011 Publication Proc. MLPLIT Abbreviated Journal Proc. MLPLIT  
  Volume Issue Pages 143-145  
  Keywords NbN SSPD, cavity  
  Abstract  
  Address Suzdal / Vladimir (Russia)  
  Corporate Author Thesis  
  Publisher Modern laser physics and laser-information technologies for science and manufacture Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference 1st international russian-chinese conference / youthschool-workshop  
  Notes September 23-28, 2011 Approved no  
  Call Number Serial 1385  
Permanent link to this record
 

 
Author Maslennikova, A.; Larionov, P.; Ryabchun, S.; Smirnov, A.; Pentin, I.; Vakhtomin, Yu.; Smirnov, K.; Kaurova, N.; Voronov, B.; Goltsman, G. url  openurl
  Title Noise equivalent power and dynamic range of NBN hot-electron bolometers Type Conference Article
  Year 2011 Publication Proc. MLPLIT Abbreviated Journal Proc. MLPLIT  
  Volume Issue Pages 146-148  
  Keywords NbN HEB  
  Abstract  
  Address Suzdal / Vladimir (Russia)  
  Corporate Author Thesis  
  Publisher Modern laser physics and laser-information technologies for science and manufacture Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference 1st international russian-chinese conference / youthschool-workshop  
  Notes September 23-28, 2011 Approved no  
  Call Number Serial 1386  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 80720G (1 to 9)  
  Keywords NbN SSPD, SNSPD  
  Abstract Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III  
  Notes Approved no  
  Call Number Serial 1387  
Permanent link to this record
 

 
Author Смирнов, Константин Владимирович url  openurl
  Title Создание приборов на сверхпроводниковых счетчиках фотонов и методов диагностики КМОП микросхем, гетероструктур и лазеров на квантовых точках Type Report
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords NbN SSPD  
  Abstract Этап №1 (дата окончания: 30.09.2009)

Разработана методика изготовления сверхпроводниковых однофотонных детекторов (SSPD) с монокристаллической структурой пленки сверхмалой толщины. Изготовлены экспериментальные образцы сверхпроводниковых однофотонных детекторов (SSPD). Разработана методика пакетирования сверхпроводникового однофотонного детектора в оптический узел с одномодовым оптоволокном. Изготовлены экспериментальные образцы приемных модулей на основе однофотонных сверхпроводниковых детекторов из NbN-нанопленок.

Этап №2 (дата окончания: 28.10.2009)

Разработаны методы диагностики КМОП микросхем, гетероструктур и лазеров на квантовых точках и методика измерения мощности излучения полупроводниковых лазеров на квантовых точках с использованием сверхпроводниковых однофотонных детекторов (SSPD). Проведена технико-экономическая оценка рыночного потенциала полученных результатов.
 
  Address  
  Corporate Author Thesis  
  Publisher Министерство образования и науки РФ Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Отчет о НИР/НИОКР; Министерство образования и науки РФ; Номер гранта (контракта): 02.513.11.3446; Дата гранта (контракта): 03.06.2009 Approved no  
  Call Number Serial 1828  
Permanent link to this record
 

 
Author Goltsman, G. N. url  doi
openurl 
  Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
  Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7236 Issue Pages 72360D (1 to 11)  
  Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films  
  Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1403  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N. url  openurl
  Title Terahertz heterodyne array based on NbN HEB mixers Type Abstract
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 43  
  Keywords NbN HEB mixers array  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1411  
Permanent link to this record
 

 
Author Zhang, W.; Li, N.; Jiang, L.; Ren, Y.; Yao, Q.-J.; Lin, Z.-H.; Shi, S.-C.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Dependence of noise temperature of quasi-optical superconducting hot-electron bolometer mixers on bath temperature and optical-axis displacement Type Conference Article
  Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6840 Issue Pages 684007 (1 to 8)  
  Keywords NbN HEB mixers, noise temperature, LO power  
  Abstract It is known that the increase of bath temperature results in the decrease of critical current of superconducting hot-electron bolometer (HEB) mixers owing to the depression of superconductivity, thus leading to the degradation of the mixer’s sensitivity. Here we report our study on the effect of bath temperature on the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers incorporated with a two-arm log-spiral antenna. The correlation between the bath temperature, critical current, LO power requirement and noise temperature is investigated at 0.5 THz. Furthermore, the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers is examined while there is an optical-axis displacement between the center of the extended hemispherical silicon lens and the superconducting NbN HEB device, which is placed on the back of the lens. Detailed experimental results and analysis are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Zhang, C.; Zhang, X.-C.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference Terahertz Photonics  
  Notes Approved no  
  Call Number Serial 1415  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: