toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. url  doi
openurl 
  Title Temperature dependence of the receiver noise temperature and IF bandwidth of superconducting hot electron bolometer mixers Type Journal Article
  Year 2014 Publication (down) Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 27 Issue 8 Pages 085013 (1 to 5)  
  Keywords NbN HEB mixers  
  Abstract In this paper we study the temperature dependence of the receiver noise temperature and IF noise bandwidth of superconducting hot electron bolometer (HEB) mixers. Three superconducting NbN HEB devices of different transition temperatures (Tc) are measured at 0.85 THz and 1.4 THz at different bath temperatures (Tbath) between 4 K and 9 K. Measurement results demonstrate that the receiver noise temperature of superconducting NbN HEB devices is nearly constant for Tbath/Tc, less than 0.8, which is consistent with the simulation based on a distributed hot-spot model. In addition, the IF noise bandwidth appears independent of Tbath/Tc, indicating the dominance of phonon cooling in the investigated HEB devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1358  
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Kaurova, N.; Rudzinski, M.; Desmaris, V.; Belitsky, V.; Goltsman, G. url  doi
openurl 
  Title Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer Type Journal Article
  Year 2019 Publication (down) Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 32 Issue 7 Pages 075003  
  Keywords NbN HEB mixer, GaN buffer layer, sapphire substrate  
  Abstract We report on the signal-to-noise and gain bandwidth of a niobium nitride (NbN) hot-electron bolometer (HEB) mixer at 2 THz fabricated on a sapphire substrate with a GaN buffer layer. Two mixers with different DC properties and geometrical dimensions were studied and they demonstrated very close bandwidth performance. The signal-to-noise bandwidth is increased to 8 GHz in comparison to the previous results, obtained without a buffer-layer. The data were taken in a quasi-optical system with the use of the signal-to-noise method, which is close to the signal levels used in actual astrophysical observations. We find an increase of the gain bandwidth to 5 GHz. The results indicate that prior results obtained on a substrate of crystalline GaN can also be obtained on a conventional sapphire substrate with a few micron MOCVD-deposited GaN buffer-layer.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Antipov_2019 Serial 1277  
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N. url  doi
openurl 
  Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
  Year 2006 Publication (down) Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 19 Issue 4 Pages L (9 to 12)  
  Keywords NbN HEB mixers  
  Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1456  
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N. url  doi
openurl 
  Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
  Year 1999 Publication (down) Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages 853-855  
  Keywords YBCO HTS HEB mixers  
  Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1563  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Gusev, Yu. P.; Elantiev, A. I.; Karasik, B. S.; Semenov, A. D. url  openurl
  Title Millimeter and submillimeter wave range mixer based on electronic heating of superconducting films in the resistive state Type Journal Article
  Year 1990 Publication (down) Sov. Supercond. Abbreviated Journal Sov. Supercond.  
  Volume 3 Issue 10 Pages 1582-1597  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 240  
Permanent link to this record
 

 
Author Pentin, Ivan; Finkel, Matvey; Maslennikov, Sergey; Vakhtomin, Yuri; Smirnov, Konstantin; Kaurova, Nataliya; Goltsman, Gregory url  openurl
  Title Superconducting hot-electron-bolometer mixers for the mid-IR Type Journal Article
  Year 2017 Publication (down) Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords IR NbN HEB mixers  
  Abstract The work presents the result of development of the NbN superconducting hot-electron-bolometer (HEB) mixer. The sensitive element of the mixer is directly coupled to mid-IR radiation, and doesn’t have planar metallic antenna. Investigations of noise characteristics of NbN HEB mixer were performed at the frequency 28.4 THz (λ = 10.6 µm) by using gas-discharge CW CO2-laser without consideration of optical and electrical losses in the heterodyne receiver. The noise temperature of NbN HEB mixer with the size of the sensitive element 10 µm × 10 µm was 2320 K (~ 1.5hν/kB) at the heterodyne frequency of 28.4 THz. The noise temperature was determined by measuring the Y-factor taking into account the term which describes fluctuations of zero-point oscillations in accordance with the fluctuation-dissipation theorem of Calle-Welton. Isothermal method was used to estimate the absorbed heterodyne radiation power which was 9 µW at the optimal operating point for the minimum noise temperature of NbN HEB mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1684-1719 ISBN Medium  
  Area Expedition Conference  
  Notes http://jre.cplire.ru/jre/oct17/9/abstract.html (Russian) Гетеродинный приемник со сверхпроводниковым смесителем на эффекте электронного разогрева для среднего инфракрасного диапазона Approved no  
  Call Number Serial 1747  
Permanent link to this record
 

 
Author Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik openurl 
  Title Hot-electron bolometer terahertz mixers for the Herschel Space Observatory Type Journal Article
  Year 2008 Publication (down) Review of Scientific Instruments Abbreviated Journal Rev. Sci. Instrum.  
  Volume 79 Issue Pages 034501  
  Keywords HEB mixer, HEB detector, HEB direct detector, applications  
  Abstract We report on low noise terahertz mixers(1.4–1.9THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5to2.5THz, with 30GHz resolution) and also by measuring the mixernoise temperature at a limited number of discrete frequencies. The lowest mixernoise temperature recorded was 750K [double sideband (DSB)] at 1.6THz and 950KDSB at 1.9THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4–4.8GHz, the mixernoise temperature was 1100KDSB at 1.6THz and 1450KDSB at 1.9THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200–500nW range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 908  
Permanent link to this record
 

 
Author Phillips, T. G.; Jefferts, K. B. doi  openurl
  Title A low temperature bolometer heterodyne receiver for Millimeter wave astronomy Type Journal Article
  Year 1973 Publication (down) Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 44 Issue 8 Pages 1009-1014  
  Keywords InSb HEB mixer  
  Abstract Liquid helium cooled InSb hot electronbolometers are used in a balanced mixer configuration as detectors for an imagelessmicrowave receiver. The system is designed for mounting at the prime focus of the National Radio Astronomy Observatory (NRAO) 11 m antenna at Kitt Peak, Arizona, and is suitable for the study of rotational line spectra of interstellar gas molecules. Currently the operating frequency is in the 90–140 GHz band where the double sideband system noise temperature is 250 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 927  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Loudkov, D. N. url  doi
openurl 
  Title Terahertz superconducting hot-electron bolometer mixers and their application in radio astronomy Type Journal Article
  Year 2003 Publication (down) Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 46 Issue 8/9 Pages 604-617  
  Keywords NbN HEB mixers  
  Abstract We review the latest developments, research, and radioastronomy applications of hot-electron bolometer (HEB) mixers operated in the terahertz waveband. The physical principles of operation of terahertz HEB mixers are presented, their manufacturing from ultrathin NbN films, the main HEB-mixer parameters and their measurement techniques are discussed, and practical terahertz radioastronomy projects based on heterodyne receivers with HEB mixers are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes UDC 537.312.62 Approved no  
  Call Number Serial 472  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. doi  openurl
  Title Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
  Year 2009 Publication (down) Radiophys. Quant. Electron. Abbreviated Journal  
  Volume 52 Issue 8 Pages 576-582  
  Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel  
  Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 599  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: