toggle visibility Search & Display Options

Select All    Deselect All
 | 
Citations
 | 
Teich MC. Infrared heterodyne detection. In: Proc. IEEE. Vol 56. IEEE; 1968. p. 37–46.
toggle visibility
Gershenson ME, Gong D, Sato T, Karasik BS, Sergeev AV. Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures. Appl. Phys. Lett.. 2001;79:2049–51.
toggle visibility
Ferrari S, Kovalyuk V, Hartmann W, Vetter A, Kahl O, Lee C, et al. Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors. Opt Express. 2017;25(8):8739–50.
toggle visibility
Käufl HU, Rothermal H, Drapatz S. Investigation of the Martian atmosphere by 10 micron heterodyne spectroscopy. A&A. 1984;136:319–25.
toggle visibility
Rothermel H, Käufl HU, Schrey U, Drapatz S. Thermal structure of the Martian mesosphere. A&A. 1988;196:296–300.
toggle visibility
Johnson MA, Betz AL, McLaren RA, Townes CH, Sutton EC. Nonthermal 10 micron CO2 emission lines in the atmospheres of Mars and Venus. A&A. 1976;208:145.
toggle visibility
Rothermel H, Käufl HU, Yu Y. A heterodyne spectrometer for astronomical measurements at 10 micrometers. A&A. 1983;126:387–92.
toggle visibility
Betz AL, Johnson MA, McLaren RA, Sutton EC. Heterodyne detection of CO2 emission lines and wind velocities in the atmosphere of Venus. Astrophys. J.. 1976;208:L141–L144.
toggle visibility
Масленников СН. Смесители на эффекте электронного разогрева для терагерцового и инфракрасного диапазонов [Ph.D. thesis].; 2007.
toggle visibility
Финкель МИ. Терагерцовые смесители на эффекте электронного разогрева в ультратонких плёнках NbN и NbTiN [Ph.D. thesis].; 2006.
toggle visibility
Select All    Deselect All
 | 
Citations
 |