toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Hajenius, M.; Yang, Z. Q.; Gao, J. R.; Baselmans, J. J. A.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Optimized sensitivity of NbN hot electron bolometer mixers by annealing Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 399-402  
  Keywords NbN HEB mixers  
  Abstract We report that the heterodyne sensitivity of superconducting hot-electron bolometers (HEBs) increases by 25-30% after annealing at 85degC in high vacuum. The devices studied are twin-slot antenna coupled mixers with a small area NbN bridge of 1 mum times 0.15 mum, above which there is a SiO 2 passivation layer. The mixer noise temperature, gain, and resistance versus temperature curve of a HEB before and after annealing are compared and analysed. We show that the annealing reduces the intrinsic noise of the mixer by 37% and makes the superconducting transition of the bridge and the contacts sharper. We argue that the reduction ofthe noise is mainly due to the improvement of the transparency of the contact/film interface. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and at a bath temperature of 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1426  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G. url  doi
openurl 
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
  Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 103 Issue 18 Pages 181121 (1 to 5)  
  Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate  
  Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1171  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Klapwijk, T. M.; Voronov, B.; Grishin, E.; Gol’tsman, G.; Zorman, C. A.; Mehregany, M. url  doi
openurl 
  Title Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue 6 Pages 062504 (1 to 3)  
  Keywords NbN films, nanofilms  
  Abstract The authors have realized NbN (100) nanofilms on a 3C-SiC (100)/Si(100) substrate by dc reactive magnetron sputtering at 800°C. High-resolution transmission electron microscopy (HRTEM) is used to characterize the films, showing a monocrystalline structure and confirming epitaxial growth on the 3C-SiC layer. A film ranging in thickness from 3.4to4.1nm shows a superconducting transition temperature of 11.8K, which is the highest reported for NbN films of comparable thickness. The NbN nano-films on 3C-SiC offer a promising alternative to improve terahertz detectors. For comparison, NbN nanofilms grown directly on Si substrates are also studied by HRTEM.

The authors acknowledge S. V. Svetchnikov at National Centre for HRTEM at Delft, who prepared the specimens for HRTEM inspections. This work was supported by the EU through RadioNet and INTAS.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1425  
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Stability of heterodyne terahertz receivers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 6 Pages 064904 (1 to 9)  
  Keywords NbN HEB mixers  
  Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1444  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 8 Pages 084510 (1 to 7)  
  Keywords NbN HEB mixers  
  Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electron bolometer mixer at 673GHz. We find that the small signal noise temperature, relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 and 77K calibration loads. In a separate set of experiments we show that the direct detection effect is caused by a combination of bias current reduction when switching from the 77 to the 300K

load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1442  
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N. doi  openurl
  Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300704 (1 to 4)  
  Keywords HEB mixer, IR, optical antenna  
  Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 952  
Permanent link to this record
 

 
Author Seliverstov, S.; Maslennikov, S.; Ryabchun, S.; Finkel, M.; Klapwijk, T. M.; Kaurova, N.; Vachtomin, Yu.; Smirnov, K.; Voronov, B.; Goltsman, G. doi  openurl
  Title Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300304  
  Keywords HEB detector responsivity, HEB model, numerical calculations, numerical model  
  Abstract We characterize superconducting antenna-coupled hot-electron bolometers for direct detection of terahertz radiation operating at a temperature of 9.0 K. The estimated value of responsivity obtained from lumped-element theory is strongly different from the measured one. A numerical calculation of the detector responsivity is developed, using the Euler method, applied to the system of heat balance equations written in recurrent form. This distributed element model takes into account the effect of nonuniform heating of the detector along its length and provides results that are in better agreement with the experiment. At a signal frequency of 2.5 THz, the measured value of the optical detector noise equivalent power is 2.0 × 10-13 W · Hz-0.5. The value of the bolometer time constant is 35 ps. The corresponding energy resolution is about 3 aJ. This detector has a sensitivity similar to that of the state-of-the-art sub-millimeter detectors operating at accessible cryogenic temperatures, but with a response time several orders of magnitude shorter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 953  
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 495-498  
  Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model  
  Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 980  
Permanent link to this record
 

 
Author Romijn, J.; Klapwijk, T. M.; Renne, M. J.; Mooij, J. E. doi  openurl
  Title Critical pair-breaking current in superconducting aluminum strips far below Tc Type Journal Article
  Year 1982 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 26 Issue 7 Pages 3648-3655  
  Keywords superconducting nanowire  
  Abstract Critical currents of narrow, thin aluminum strips have been measured as a function of temperature. For the smallest samples uniformity of the current density is obtained over a large temperature range. Hence the intrinsic limit on the currentcarrying capacity of the superconductor was measured outside the Ginzburg-Landau -regime. The experimental values are compared with recent theoretical predictions by Kupriyanov and Lukichev. An approximate method of solving their equations is given, the results of which agree with the exact solution to within 1%. Experimental data are in excellent agreement with theoretical predictions. The absolute values agree if one assumes a ρl value of 4×10–16 Ωm2 with vF=1.3×106 m/s. This value for ρl is the same as that found from measurements of the anomalous skin effect but differs from values extracted from size-effect-limited resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 925  
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M. doi  openurl
  Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
  Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal  
  Volume 109 Issue 13 Pages 132602  
  Keywords HEB mixer, contacts  
  Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1107  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: