toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Larrey, V.; Villegier, J. -C.; Salez, M.; Miletto-Granozio, F.; Karpov, A. doi  openurl
  Title Processing and characterization of high Jc NbN superconducting tunnel junctions for THz analog circuits and RSFQ Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal  
  Volume (up) 9 Issue 2 Pages 3216-3219  
  Keywords RSFQ, NbN, SIS  
  Abstract A generic NbN Superconducting Tunnel Junctions (STJ) technology has been developed using conventional substrates (Si and SOI-SIMOX) for making THz spectrometers including SIS receivers and RSFQ logic gates. NbN/MgO/NbN junctions with area of 1 /spl mu/m/sup 2/, Jc of 10 kA/cm/sup 2/ and low sub-gap leakage current (Vm>25 mV) are currently obtained from room temperature sputtered multilayers followed by a post-annealing at 250/spl deg/C. Using a thin MgO buffer layer deposited underneath the NbN electrodes, ensures lower NbN surface resistance values (Rs=7 /spl mu//spl Omega/) at 10 GHz and 4 K. Epitaxial NbN [100] films on MgO [100] with high gap frequency (1.4 THz) have also been achieved under the same deposition conditions at room temperature. The NbN SIS has shown good I-V photon induced steps when LO pumped at 300 GHz. We have developed an 8 levels Al/NbN multilayer process for making 1.5 THz SIS mixers (including Al antennas) on Si membranes patterned in SOI-SIMOX. Using the planarization techniques developed at the Si-MOS CEA-LETI Facility, we have also demonstrated on the possibility of extending our NbN technology to high level RSFQ circuit integration with 0.5 /spl mu/m/sup 2/ junction area, made on large area substrates (up to 8 inches).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1081  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Goltsman, G. N. url  doi
openurl 
  Title Terahertz emission from a weakly-coupled GaAs/AlGaAs superlattice biased into three different modes of current self-oscillations Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances  
  Volume (up) 9 Issue 10 Pages 105220  
  Keywords GaAs/AlGaAs superlattice, SL, NbN HEB  
  Abstract Radio-frequency modulated terahertz (THz) emission power from weakly-coupled GaAs/AlGaAs superlattice (SL) has been increased by parallel connection of several SL mesas. Each SL mesa is a self-oscillator with its own oscillation frequency and mode. In coupled non-identical SL mesas biased at different voltages within the hysteresis loop the chaotic, quasiperiodic and frequency-locked modes of self-oscillations of current arise. THz emission was detected when three connected in parallel SL mesas were biased into the frequency-locked and quasiperiodic modes of self-oscillations of current, while in the chaotic mode of those it falls to the noise level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1274  
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K. url  doi
openurl 
  Title 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances  
  Volume (up) 9 Issue 7 Pages 075307  
  Keywords NbN HEB mixers, QCL, IR  
  Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1293  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title Optical single-photon detection in micrometer-scale NbN bridges Type Journal Article
  Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume (up) 9 Issue 6 Pages 064037 (1 to 13)  
  Keywords NbN SSPD, SNSPD  
  Abstract We demonstrate experimentally that single-photon detection can be achieved in micrometer-wide NbN bridges, with widths ranging from 0.53 to 5.15  μm and for photon wavelengths of 408 to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50% of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors, based on nanometer-scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modeling based on the theory of nonequilibrium superconductivity, including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1303  
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Yang, Z. Q.; Baryshev, A. M.; Barends, R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.; Callaos, N. url  isbn
openurl 
  Title Twin-slot antenna coupled NbN hot electron bolometer mixers for space applications Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI  
  Volume (up) 9 Issue Pages 148-153  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 9806560639, 9789806560635 Medium  
  Area Expedition Conference 9th World Multi-Conference on Systemics, Cybernetics and Informatics  
  Notes Approved no  
  Call Number Serial 1480  
Permanent link to this record
 

 
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M. url  openurl
  Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations  
  Volume (up) 9 Issue 4 Pages 242-245  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1550  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Antipov, S. V.; Vakhtomin, Y. B.; Goltsman, G. N.; Gershenzon, E. M.; Cherednichenko, S. I.; Kroug, M.; Kollberg, E. url  openurl
  Title Conversion and noise bandwidths of terahertz NbN hot-electron bolometer mixers Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations  
  Volume (up) 9 Issue 3 Pages 205-210  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1551  
Permanent link to this record
 

 
Author Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  doi
openurl 
  Title An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.  
  Volume (up) 9 Issue 9 Pages 366-368  
  Keywords waveguide NbN HEB mixers  
  Abstract A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1565  
Permanent link to this record
 

 
Author Il'in, K. S.; Currie, M.; Lindgren, M.; Milostnaya, I. I.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Quantum efficiency and time-domain response of superconducting NbN hot-electron photodetectors Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (up) 9 Issue 2 Pages 3338-3341  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on the response of ultrathin superconducting NbN hot-electron photodetectors. We have measured the photoresponse of few-nm-thick, micron-size structures, which consisted of single and multiple microbridges, to radiation from the continuous-wave semiconductor laser and the femtosecond Ti:sapphire laser with the wavelength of 790 nm and 400 nm, respectively. The maximum responsivity was observed near the film's superconducting transition with the device optimally current-biased in the resistive state. The responsivity of the detector, normalized to its illuminated area and the coupling factor, was 220 A/W(3/spl times/10/sup 4/ V/W), which corresponded to a quantum efficiency of 340. The responsivity was wavelength independent from the far infrared to the ultraviolet range, and was at least two orders of magnitude higher than comparable semiconductor optical detectors. The time constant of the photoresponse signal was 45 ps, when was measured at 2.15 K in the resistive (switched) state using a cryogenic electro-optical sampling technique with subpicosecond resolution. The obtained results agree very well with our calculations performed using a two-temperature model of the electron heating in thin superconducting films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1566  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume (up) 9 Issue 2 Pages 4217-4220  
  Keywords NbN HEB mixers  
  Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1568  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: