toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Baryshev, A. M.; Wild, W.; Likhachev, S. F.; Vdovin, V. F.; Goltsman, G. N.; Kardashev, N. S. url  openurl
  Title Main parameters and instrumentation of Millimetron space mission Type Abstract
  Year (down) 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 20th ISSTT  
  Volume Issue Pages 108  
  Keywords SVLBI, Millimetron space observatory  
  Abstract Millimetron (official RosKosmos name ”Spectrum-M”) is a part of ambitious program called Spectrum intended to cover the whole electromagnetic spectrum with world class facilities. It is an approved mission included in Russian space program with the launch date in 2017..2019 time frame. The Millimetron satellite has a deployable 12 m diameter antenna with inner solid 4..6 m dish and a rim of petals. The mirror design is largely based on Radioastron mission concept that will be launched in 2009. If the antenna is passively cooled by radiation to open space, it would operate at approx. 50 K surface temperature, due to presence of a deployable three layer radiation screen. As a goal, there is a consideration of active cooling of antenna to 4 K, but this will depend on resources available to the project. Lagrangian libration point L2 considered for Millimetron orbit. There are four groups of scientific instruments envisioned: SVLBI instruments Space-Earth VLBI. It will allow to achieve unprecedented spatial resolution. Millimetron mission will attempt to achieve a mm/submm wave SVLBI. For that purpose, a SVLBI instrument covering selected ALMA bands and a standard VLBI band is envisioned, accompanied by a maser reference oscillator, a data digitizing and memory system, and a high speed data transmission link to ground. The ALMA bands can be extended to cover water lines if detector technology allows. Type of detector – heterodyne. Photometer/polarimeter. Recent progress in direct detector cameras with low spectral resolution, allows to propose a large format (5-10 kPixel) photometer camera on board of Millimetron mission. This camera can cover 0.1 – 2 THz region (with adequate amount of pixels per each subband). Wide band moderate resolution imaging spectrometer. Wide band moderate R = 1000 imaging spectrometer type instrument similar to SPICA SAFARI is planned, taking advantage of large cooled dish. It will cover the adequate spectral range allowable by antenna and will also work below 1 THz, as no ground instrument can have a cold main dish. High resolution spectrometer. For high resolution spectroscopy a heterodyne instrument is proposed, conceptually similar to HIFI on Herschel. This instrument will cover interesting frequency spots in 0.5..4 THz frequency range (using central part of antenna for higher frequency). It is sure that advances in LO and mixer technology will allow this frequency coverage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1401  
Permanent link to this record
 

 
Author Wild, W.; Kardashev, N. S.; Likhachev, S. F.; Babakin, N. G.; Arkhipov, V. Y.; Vinogradov, I. S.; Andreyanov, V. V.; Fedorchuk, S. D.; Myshonkova, N. V.; Alexsandrov, Y. A.; Novokov, I. D.; Goltsman, G. N.; Cherepaschuk, A. M.; Shustov, B. M.; Vystavkin, A. N.; Koshelets, V. P.; Vdovin, V.F.; de Graauw, T.; Helmich, F.; vd Tak, F.; Shipman, R.; Baryshev, A.; Gao, J. R.; Khosropanah, P.; Roelfsema, P.; Barthel, P.; Spaans, M.; Mendez, M.; Klapwijk, T.; Israel, F.; Hogerheijde, M.; vd Werf, P.; Cernicharo, J.; Martin-Pintado, J.; Planesas, P.; Gallego, J. D.; Beaudin, G.; Krieg, J. M.; Gerin, M.; Pagani, L.; Saraceno, P.; Di Giorgio, A. M.; Cerulli, R.; Orfei, R.; Spinoglio, L.; Piazzo, L.; Liseau, R.; Belitsky, V.; Cherednichenko, S.; Poglitsch, A.; Raab, W.; Guesten, R.; Klein, B.; Stutzki, J.; Honingh, N.; Benz, A.; Murphy, A.; Trappe, N.; Räisänen, A. url  doi
openurl 
  Title Millimetron—a large Russian-European submillimeter space observatory Type Journal Article
  Year (down) 2009 Publication Exp. Astron. Abbreviated Journal Exp. Astron.  
  Volume 23 Issue 1 Pages 221-244  
  Keywords Millimetron space observatory, VLBI, very long baseline interferometry  
  Abstract Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0922-6435 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1402  
Permanent link to this record
 

 
Author Goltsman, G. N. url  doi
openurl 
  Title Ultrafast nanowire superconducting single-photon detector with photon number resolving capability Type Conference Article
  Year (down) 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 7236 Issue Pages 72360D (1 to 11)  
  Keywords PNR NbN SSPD, SNSPD, superconducting single-photon detectors, photon number resolving detectors, ultrathin NbN films  
  Abstract In this paper we present a review of the state-of-the-art superconducting single-photon detector (SSPD), its characterization and applications. We also present here the next step in the development of SSPD, i.e. photon-number resolving SSPD which simultaneously features GHz counting rate. We have demonstrated resolution up to 4 photons with quantum efficiency of 2.5% and 300 ps response pulse duration providing very short dead time.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Arakawa, Y.; Sasaki, M.; Sotobayashi, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1403  
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Finkel, M. I.; Maslennikov, S. N.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Goltsman, G. N. url  openurl
  Title Fabrication and characterisation of NbN HEB mixers with in situ gold contacts Type Conference Article
  Year (down) 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 62-67  
  Keywords HEB, mixer, NbN, in-situ contacts  
  Abstract We present our recent results of the fabrication and testing of NbN hot-electron bolometer mixers with in situ gold contacts. An intermediate frequency bandwidth of about 6 GHz has been measured for the mixers made of a 3.5-nm NbN film on a plane Si substrate with in situ gold contacts, compared to 3.5 GHz for devices made of the same film with ex situ gold contacts. The increase in the intermediate frequency bandwidth is attributed to additional diffusion cooling through the improved contacts, which is further supported by the its dependence on the bridge length: intermediate frequency bandwidths of 3.5 GHz and 6 GHz have been measured for devices with lengths of 0.35 μm and 0.16 μm respectively at a local oscillator frequency of 300 GHz near the superconducting transition. At a local oscillator frequency of 2.5 THz the receiver has offered a DSB noise temperature of 950 K. When compared to the previous result of 1300 K obtained at the same local oscillator frequency for devices fabricated with an ex situ route, such a low value of the noise temperature may also be attributed to the improved gold contacts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 412  
Permanent link to this record
 

 
Author Smirnov, A. V.; Larionov, P. A.; Finkel, M. I.; Maslennikov, S. N.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title NbZr films for THz phonon-cooled HEB mixers Type Conference Article
  Year (down) 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 19th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 44-47  
  Keywords HEB, NbZr, material search  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Groningen, Netherlands Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 577  
Permanent link to this record
 

 
Author Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea url  doi
openurl 
  Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
  Year (down) 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.  
  Volume 2 Issue 5 Pages 302-306  
  Keywords SSPD, photon-number-resolving  
  Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 916  
Permanent link to this record
 

 
Author Tarkhov, M.; Claudon, J.; Poizat, J. Ph.; Korneev, A.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Semenov, A. V.; Gol'tsman, G. url  doi
openurl 
  Title Ultrafast reset time of superconducting single photon detectors Type Journal Article
  Year (down) 2008 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue 24 Pages 241112 (1 to 3)  
  Keywords SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 429  
Permanent link to this record
 

 
Author Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N. openurl 
  Title NbN HEB mixer: fabrication, noise temperature reduction and characterization Type Conference Article
  Year (down) 2008 Publication Proc. Basic problems of superconductivity Abbreviated Journal  
  Volume Issue Pages  
  Keywords HEB, mixer, noise temperature, conversion gain bandwidth  
  Abstract We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow-Zvenigorod Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 591  
Permanent link to this record
 

 
Author Feautrier, P.; le Coarer, E.; Espiau de Lamaestre, R.; Cavalier, P.; Maingault, L.; Villégier, J-C.; Frey, L.; Claudon, J.; Bergeard, N.; Tarkhov, M.; Poizat, J-P. openurl 
  Title High-speed superconducting single photon detectors for innovative astronomical applications Type Conference Article
  Year (down) 2008 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 97 Issue 1 Pages 10  
  Keywords SSPD  
  Abstract Superconducting Single Photon Detectors (SSPD) are now mature enough to provide extremely interesting detector performances in term of sensitivity, speed, and geometry in the visible and near infrared wavelengths. Taking advantage of recent results obtained in the Sinphonia project, the goal of our research is to demonstrate the feasibility of a new family of micro-spectrometers, called SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer), associated to an array of SSPD, the whole assembly being integrated on a monolithic sapphire substrate coupling the detectors array to a waveguide injecting the light. This unique association will create a major breakthrough in the domain of visible and infrared spectroscopy for all applications where the space and weight of the instrument is limited. SWIFTS is an innovative way to achieve very compact spectro-detectors using nano-detectors coupled to evanescent field of dielectric integrated optics. The system is sensitive to the interferogram inside the dielectric waveguide along the propagation path. Astronomical instruments will be the first application of such SSPD spectrometers. In this paper, we describes in details the fabrication process of our SSPD built at CEA/DRFMC using ultra-thin NbN epitaxial films deposited on different orientations of Sapphire substrates having state of the art superconducting characteristics. Electron beam lithography is routinely used for patterning the devices having line widths below 200 nm and down to 70 nm. An experimental set-up has been built and used to test these SSPD devices and evaluate their photon counting performances. Photon counting performances of our devices have been demonstrated with extremely low dark counts giving excellent signal to noise ratios. The extreme compactness of this concept is interesting for space spectroscopic applications. Some new astronomical applications of such concept are proposed in this paper.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 648  
Permanent link to this record
 

 
Author Seleznev, V. A.; Tarkhov, M. A.; Voronov, B. M.; Milostnaya, I. I.; Lyakhno, V. Yu; Garbuz, A. S.; Mikhailov, M. Yu; Zhigalina, O. M.; Gol'tsman, G. N. doi  openurl
  Title Deposition and characterization of few-nanometers-thick superconducting Mo-Re films Type Journal Article
  Year (down) 2008 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 21 Issue 11 Pages 115006 (1 to 6)  
  Keywords  
  Abstract We report on the fabrication and investigation of few-nanometers-thick superconducting molybdenum-rhenium (Mo-Re) films intended for use in nanowire single-photon superconducting detectors (SSPDs). Mo-Re films were deposited on sapphire substrates by DC magnetron sputtering of an Mo(60)-Re(40) alloy target in an atmosphere of argon. The films 2-10 nm thick had critical temperatures (Tc) from 5.6 to 9.7 K. HRTEM (high-resolution transmission electron microscopy) analysis showed that the films had a homogeneous structure. XPS (x-ray photoelectron spectroscopy) analysis showed the Mo to Re atom ratio to be 0.575/0.425, oxygen concentration to be 10%, and concentration of other elements to be 1%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 723  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: