toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. url  openurl
  Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 405-412  
  Keywords NbN HEB mixers  
  Abstract (down) Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1502  
Permanent link to this record
 

 
Author Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lee, C.; Rockstuhl, C.; Semenov, A.; Gol'tsman, G.; Pernice, W. url  doi
openurl 
  Title Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate Type Journal Article
  Year 2019 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 115 Issue 10 Pages 101104  
  Keywords SSPD, SNSPD, waveguide  
  Abstract (down) Nanophotonic circuitry and superconducting nanowires have been successfully combined for detecting single photons, propagating in an integrated photonic circuit, with high efficiency and low noise and timing uncertainty. Waveguide-integrated superconducting nanowire single-photon detectors (SNSPDs) can nowadays be engineered to achieve subnanosecond recovery times and can potentially be adopted for applications requiring Gcps count rates. However, particular attention shall be paid to such an extreme count rate regime since artifacts in the detector functionality emerge. In particular, a count-rate dependent detection efficiency has been encountered that can compromise the accuracy of quantum detector tomography experiments. Here, we investigate the response of waveguide-integrated SNSPDs at high photon flux and identify the presence of parasitic currents due to the accumulation of charge in the readout electronics to cause the above-mentioned artifact in the detection efficiency. Our approach allows us to determine the maximum photon count rate at which the detector can be operated without adverse effects. Our findings are particularly important to avoid artifacts when applying SNSPDs for quantum tomography.

We acknowledge support through ERC Consolidator Grant No. 724707 and from the Deutsche Forschungsgemeinschaft through Project No. PE 1832/5-1,2, as well as funding by the Volkswagen Foundation. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 675745. V.K. and G.G. acknowledge support from the Russian Science Foundation Project No. 16-12-00045 (NbN film deposition and testing). A.V. acknowledges support from the Karlsruhe School of Optics and Photonics (KSOP).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1185  
Permanent link to this record
 

 
Author Polyakova, M. I.; Korneev, A. A.; Semenov, A. V. url  doi
openurl 
  Title Comparison single- and double- spot detection efficiencies of SSPD based to MoSi and NbN films Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012146 (1 to 3)  
  Keywords NbN SSPD, SNSPD, MoSi  
  Abstract (down) In this work, we present results of quantum detector tomography of superconducting single photon detector (SSPD) based on MoSi film, and compare them with previously reported data on NbN. We find that for both materials hot spot interaction length coincides with the strip width, and the dependence of single and double-spot detection efficiencies on bias current are compatible with sufficiently large hot-spot size, approaching the strip width.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1787  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. url  doi
openurl 
  Title Recent nanowire superconducting single-photon detector optimization for practical applications Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue 3 Pages 2201204 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract (down) In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2013 Serial 996  
Permanent link to this record
 

 
Author Lang, P. T.; Leipold, I.; Knott, W. J.; Semenov, A. D.; Gol'tsman, G. N.; Renk, K. F. url  doi
openurl 
  Title New far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser Type Journal Article
  Year 1991 Publication Appl. Phys. B Abbreviated Journal Appl. Phys. B  
  Volume 53 Issue 4 Pages 207-212  
  Keywords CO2 IR lasers, applications, CH3Cl, CH3Br  
  Abstract (down) In this paper we report on the detection of new far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser. We found 80 new lines for CH3Cl and 9 new lines for CH3Br in the frequency region between 16 cm−1 and 41 cm−1, all due to stimulated Raman scattering. For the Raman gain regions bandwidths up to about 700 MHz were found. We also observed high intensity short far-infrared laser pulses of durations in the nanosecond regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0721-7269 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1678  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: