|   | 
Details
   web
Records
Author (down) Danerud, M.; Winkler, D.; Lindgren, M.; Zorin, M.; Trifonov, V.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Nonequilibrium and bolometric photoresponse in patterned YBa2Cu3O7−δ thin films Type Journal Article
Year 1994 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 76 Issue 3 Pages 1902-1909
Keywords YBCO HTS HEB detector, nonequilibrium response
Abstract Epitaxial laser deposited YBa2Cu3O7−δ films of ∼50 nm thickness were patterned into detectors consisting of ten parallel 1 μm wide strips in order to study nonequilibrium and bolometric effects. Typically, the patterned samples had critical temperatures around 86 K, transition widths around 2 K and critical current densities above 1×106A/cm2 at 77 K. Pulsed laser measurements at 0.8 μm wavelength (17 ps full width at half maximum) showed a ∼30 ps response, attributed to electron heating, followed by a slower bolometric decay. Amplitude modulation in the band fmod=100 kHz–10 GHz of a laser with wavelength λ=0.8 μm showed two different thermal relaxations in the photoresponse. Phonon escape from the film (∼3 ns) is the limiting process, followed by heat diffusion in the substrate. Similar relaxations were also seen for λ=10.6 μm. The photoresponse measurements were made with the film in the resistive state and extended into the normal state. These states were created by supercritical bias currents. Measurements between 75 and 95 K (i.e., from below to above Tc) showed that the photoresponse was proportional to dR/dT for fmod=1 MHz and 4 GHz. The fast response is limited by the electron‐phonon scattering time, estimated to 1.8 ps from experimental data. The responsivity both at 0.8 and 10.6 μm wavelength was ∼1.2 V/W at fmod=1 GHz and the noise equivalent power was calculated to 1.5×10−9 WHz−1/2 for the fast response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1637
Permanent link to this record
 

 
Author (down) Chulkova, G.; Milostnaya, I.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Voronov, B.; Okunev, O.; Smirnov, K.; Gol’tsman, G.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, R.; Slysz, W.
Title Superconducting nanostructures for counting of single photons in the infrared range Type Conference Article
Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL
Volume 2 Issue Pages 100-103
Keywords SSPD, SNSPD
Abstract We present our studies on ultrafast superconducting single-photon detectors (SSPDs) based on ultrathin NbN nanostructures. Our SSPDs are patterned by electron beam lithography from 4-nm thick NbN film into meander-shaped strips covering square area of 10/spl times/10 /spl mu/m/sup 2/. The advances in the fabrication technology allowed us to produce highly uniform 100-120-nm-wide strips with meander filling factor close to 0.6. The detectors exploit a combined detection mechanism, where upon a single-photon absorption, an avalanche of excited hot electrons and the biasing supercurrent, jointly produce a picosecond voltage transient response across the superconducting nanostrip. The SSPDs are typically operated at 4.2 K, but they have shown that their sensitivity in the infrared radiation range can be significantly improved by lowering the operating temperature from 4.2 K to 2 K. When operated at 2 K, the SSPD quantum efficiency (QE) for visible light photons reaches 30-40%, which is the saturation value limited by optical absorption of our 4-nm-thick NbN film. For 1.55 /spl mu/m photons, QE was /spl sim/20% and decreases exponentially with the increase of the optical wavelength, but even at the wavelength of 6 /spl mu/m the detector remains sensitive to single photons and exhibits QE of about 10/sup -2/%. The dark (false) count rate at 2 K is as low as 2 /spl times/ 10/sup -4/ s/sup -1/, what makes our detector essentially a background-limited sensor. The very low dark-count rate results in the noise equivalent power (NEP) as low as 10/sup -18/ WHz/sup -1/2/ for the mid-infrared range (6 /spl mu/m). Further improvement of the SSPD performance in the mid-infrared range can be obtained by substituting NbN for the other, lower-T/sub c/ superconductors with the narrow superconducting gap and low quasiparticle diffusivity. The use of such materials will shift the cutoff wavelength towards the values even longer than 6 /spl mu/m.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers
Notes Approved no
Call Number Serial 1461
Permanent link to this record
 

 
Author (down) Cherednichenko, S.; Rönnung, F.; Gol’tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7-δ hot-electron bolometer mixer at 0.6 THz Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 517-522
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on a YBa 2 Cu 3 O 7-δ (YBCO) superconducting thin film. Mixer conversion loss of –46 dB, absorbed local oscillator power and intermediate frequency bandwidth were measured at the local oscillator frequency 0.6 THz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated with a planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1556
Permanent link to this record
 

 
Author (down) Cherednichenko, S.; Kroug, M.; Yagoubov, P.; Merkel, H.; Kollberg, E.; Yngvesson, K. S.; Voronov, B.; Gol’tsman, G.
Title IF bandwidth of phonon cooled HEB mixers made from NbN films on MgO substrates Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 219-227
Keywords NbN HEB mixers, cinversion gain bandwidth, IF bandwidth
Abstract An investigation of gain and noise bandwidth of phonon-cooled hot-electron bolometric (HEB) mixers is presented. The radiation coupling to the mixers is quasioptical through either a spiral or twin-slot antenna. A maximum gain bandwidth of 4.8 GHz is obtained for mixers based on a 3.5 nm thin NbN film with Tc= 10 K. The noise bandwidth is 5.6 GHz, at the moment limited by parasitic elements in the, device mount fixture. At 0.65 THz the DSB receiver noise temperature is 700-800 К in the IF band 1-2 GHz, and 1150-2700 К in the band 3.5-7 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1557
Permanent link to this record
 

 
Author (down) Cherednichenko, S.; Khosropanah, P.; Berg, T.; Merkel, H.; Kollberg, E.; Drakinskiy, V.; Voronov, B.; Gol’tsman, G.
Title Optimization of HEB mixer for the Herschel Space Observatory Type Abstract
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 16
Keywords NbN HEB mixers, applications
Abstract A mixer development for the HIFI instrument of the Herschel Space Observatory has come to the final stage. In our paper and conference presentation we will describe the most important details of the Band 6 Low and High Mixer Unit design. Special attention will be given to the optimization of the hot- electron bolometer mixer chip, which is based on 3.5nm NbN superconducting film on silicon. As the HEB’s local oscillator power requirements depend on the bolometer size, we have compared mixer noise temperature for different bolometer width- to- length ratio. A trade- off between mixer performance and local oscillator power requirements results in the mixer units equipped with optimized mixer chips, providing the largest coverage of the Band6 RF band with the lowest possible receiver noise. A short account of the beam pattern measurements of Band6 mixers will be given as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1490
Permanent link to this record