|   | 
Details
   web
Records
Author Elezov, M. S.; Shcherbatenko, M. L.; Sych, D. V.; Goltsman, G. N.
Title Development of control method for an optimal quantum receiver Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages (down) 012126
Keywords Helstrom bound, SPD, single photon detector, below quantum limit
Abstract We propose a method for optimal displacement controlling of an optimal quantum receiver for registrations a binary coherent signal. An optimal receiver is able to distinguish between two phase-modulated states of a coherent signal. The optimal receiver controlling method can be used later in practice in various physical implementations of the optimal receiver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1264
Permanent link to this record
 

 
Author Gayduchenko, I.; Fedorov, G.; Titova, N.; Moskotin, M.; Obraztsova, E.; Rybin, M.; Goltsman, G.
Title Towards to the development of THz detectors based on carbon nanostructures Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1092 Issue Pages (down) 012039 (1 to 4)
Keywords CVD graphene, carbon nanotubes, CNT, field effect transistors, FET, THz detectors
Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the carbon nanostructures as possible solution for that problem. In this work we investigate the response to sub-terahertz radiation of detectors with sensor elements based on CVD graphene as well as its derivatives – carbon nanotubes (CNTs). The devices are made in configuration of field effect transistors (FET) with asymmetric source and drain (vanadium and gold) contacts and operate as lateral Schottky diodes. We show that at 300K semiconducting CNTs show better performance up to 300GHz with responsivity up to 100V/W, while quasi-metallic CNTs are shown to operate up to 2.5THz. At 300 K graphene detector exhibit the room-temperature responsivity from R = 15 V/W at f = 129 GHz to R = 3 V/W at f = 450 GHz. We find that at low temperatures (77K) the graphene lateral Schottky diodes responsivity rises with the increasing frequency of the incident sub-THz radiation. We interpret this result as a manifestation of a plasmonic effect in the devices with the relatively long plasmonic wavelengths. The obtained data allows for determination of the most promising directions of development of the technology of nanocarbon structures for the detection of THz radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1302
Permanent link to this record
 

 
Author Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol'tsman, G.; Pernice, W.
Title Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors Type Journal Article
Year 2017 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 25 Issue 8 Pages (down) 8739-8750
Keywords SSPD, SNSPD, photon counting; Infrared; Quantum detectors; Integrated optics; Multiphoton processes; Photon statistics
Abstract We investigate how the bias current affects the hot-spot relaxation dynamics in niobium nitride. We use for this purpose a near-infrared pump-probe technique on a waveguide-integrated superconducting nanowire single-photon detector driven in the two-photon regime. We observe a strong increase in the picosecond relaxation time for higher bias currents. A minimum relaxation time of (22 +/- 1)ps is obtained when applying a bias current of 50% of the switching current at 1.7 K bath temperature. We also propose a practical approach to accurately estimate the photon detection regimes based on the reconstruction of the measured detector tomography at different bias currents and for different illumination conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1118
Permanent link to this record
 

 
Author Nebosis, R. S.; Steinke, R.; Lang, P. T.; Schatz, W.; Heusinger, M. A.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M.
Title Picosecond YBa2Cu3O7−δdetector for far‐infrared radiation Type Journal Article
Year 1992 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 72 Issue 11 Pages (down) 5496-5499
Keywords YBCO HTS detectors
Abstract We report on a picosecond YBa2Cu3O7−δ detector for far‐infrared radiation. The detector, consisting of a current carrying structure cooled to liquid‐nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far‐infrared laser in the frequency range from 25 to 215 cm−1. We found that the sensitivity (1 mV/W) was almost constant in this frequency range. We estimated a noise equivalent power of less than 5×10−7 W Hz−1/2. Taking into account the results of a mixing experiment (in the frequency range from 4 to 30 cm−1) we suggest that the response time of the detector was few picoseconds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1668
Permanent link to this record
 

 
Author Zhang, Zijing; Zhang, Jianlong; Wu, Long; Zhang, Yong; Zhao, Yuan; Su, Jianzhong
Title Photon-counting chirped amplitude modulation lidar using a smart premixing method Type Journal Article
Year 2013 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 38 Issue 21 Pages (down) 4389-4392
Keywords photon-counting detector, lidar, Geiger mode APD, Geiger mode lidar
Abstract We proposed a new premixing method for photon-counting chirped amplitude modulation lidar (PCCAML). Earlier studies used the counting results of the returned signal detected by a Geiger mode avalanche photodiode detector (Gm-APD) to mix with the reference signal, called the postmixing method. We use an alternative method known as the premixing method, in which the reference signal is used to directly modulate the sampling gate width of the Gm-APD, and the mixing of the returned signal and the reference signal is completed before the Gm-APD. This premixing method is more flexible and may perform better than the postmixing method in terms of signal-to-noise ratio by cutting down a separated mixer commonly used in the postmixing lidar system. Furthermore, this premixing method lowers the demand for the sampling frequency of the Gm-APD. It allows the use of a much wider modulation bandwidth to improve the range accuracy and resolution. To the best of our knowledge, this is the first report to use the premixing method in the PCCAML system, which will benefit future lidar applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1006
Permanent link to this record