|   | 
Details
   web
Records
Author Shah, Jagdeep; Pinczuk, A.; Gossard, A. C.; Wiegmann, W.
Title Energy-loss rates for hot electrons and holes in GaAs quantum wells Type Journal Article
Year 1985 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 54 Issue (up) Pages 2045-2048
Keywords 2DEG, GaAs/AlGaAs, heat flow, electron-phonon, hole-phonon, carrier-phonon, interactions
Abstract We report the first direct determination of carrier-energy-loss rates in a semiconductor. These measurements provide fundamental insight into carrier-phonon interactions in semiconductors. Unexpectedly large differences are found in the energy-loss rates for electrons and holes in GaAs/AlGaAs quantum wells. This large difference results from an anomalously low electron-energy-loss rate, which we attribute to the presence of nonequilibrium optical phonons rather than the effects of reduced dimensionality or dynamic screening.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 633
Permanent link to this record
 

 
Author Vercruyssen, N.; Verhagen, T. G. A.; Flokstra, M. G.; Pekola, J. P.; Klapwijk, T. M.
Title Evanescent states and nonequilibrium in driven superconducting nanowires Type Journal Article
Year 2012 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 85 Issue (up) Pages 224503(1-10)
Keywords Al HEB, Al superconducting nanowire, global state, bimodal state, quasiclassical kinetic equations, Usadel equation
Abstract We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal superconducting states. The different states are identified by using two-probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 898
Permanent link to this record
 

 
Author Bardeen, J.; Cooper, L. N.; Schrieffer, J. R.
Title Microscopic theory of superconductivity Type Journal Article
Year 1957 Publication Phys. Rev. Abbreviated Journal Phys. Rev.
Volume 106 Issue (up) Pages 162-164
Keywords BCS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 900
Permanent link to this record
 

 
Author Shah, Nayana; Pekker, David; Goldbart, Paul M.
Title Inherent stochasticity of superconductor-resistor switching behavior in nanowires Type Journal Article
Year 2008 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 101 Issue (up) Pages 207001(1 to 4)
Keywords superconducting nanowires, phase-slip, self-heating effect, temperature profile
Abstract We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time using the master-equation formalism, and hence obtain the distribution of switching currents. We find that as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that although several phase-slip events are generally necessary to induce switching, there is an experimentally accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to induce switching, via the local heating it causes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 919
Permanent link to this record
 

 
Author Huard, B.; Pothier, H.; Esteve, D.; Nagaev, K. E.
Title Electron heating in metallic resistors at sub-Kelvin temperature Type Journal Article
Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 76 Issue (up) Pages 165426(1-9)
Keywords electron heating in resistor, HEB distributed model, HEB model, hot electrons
Abstract In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-Kelvin temperatures can significantly exceed the phonon temperature. Electron cooling proceeds mainly through two processes: electronic diffusion to and from the connecting wires and electron-phonon coupling. The goal of this paper is to present a general solution of the problem in a form that can easily be used in practical situations. As an application, we compute two quantities that depend on the electronic temperature profile: the second and the third cumulant of the current noise at zero frequency, as a function of the voltage across the resistor. We also consider time-dependent heating, an issue relevant for experiments in which current pulses are used, for instance, in time-resolved calorimetry experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk as example for writing the article on the HEB model. Approved no
Call Number Serial 936
Permanent link to this record