|   | 
Details
   web
Records
Author Shah, Nayana; Pekker, David; Goldbart, Paul M.
Title (up) Inherent stochasticity of superconductor-resistor switching behavior in nanowires Type Journal Article
Year 2008 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 101 Issue Pages 207001(1 to 4)
Keywords superconducting nanowires, phase-slip, self-heating effect, temperature profile
Abstract We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time using the master-equation formalism, and hence obtain the distribution of switching currents. We find that as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that although several phase-slip events are generally necessary to induce switching, there is an experimentally accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to induce switching, via the local heating it causes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 919
Permanent link to this record
 

 
Author Il’in, K.S.; Ptitsina, N.G.; Sergeev, A.V.; Gol’tsman, G.N.; Gershenzon, E.M.; Karasik, B.S.; Pechen, E.V.; Krasnosvobodtsev, S.I.
Title (up) Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films Type Journal Article
Year 1998 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 57 Issue 24 Pages 15623-15628
Keywords NbC films
Abstract A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2–13nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference T2 term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5–10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence ∼Tn, with the exponent n=2.5–3. This behavior is explained well by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1585
Permanent link to this record
 

 
Author Santhanam, P.; Wind, S.; Prober, D. E.
Title (up) Localization, superconducting fluctuations, and superconductivity in thin films and narrow wires of aluminum Type Journal Article
Year 1987 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 35 Issue 7 Pages 3188-3206
Keywords Al films; electron-phonon scattering; electron-electron scattering; Disordered structures; amorphous and glassy solids, Relaxation times and mean free paths, Galvanomagnetic and other magnetotransport effects
Abstract We report a comprehensive set of experiments on wide and narrow thin-film strips of aluminum which test the predictions of recent localization theory. The experiments on wide films in the two-dimensional regime confirm the theoretical predictions and also yield insight into inelastic mechanisms and spin-orbit scattering rates. Our extension of the existing theory for one-dimensional systems to include spin-orbit scattering and Maki-Thompson superconducting fluctuations is verified by the experiments. We find clear evidence for one-dimensional localization, with inferred inelastic rates identical to those in two-dimensional films. The prediction of the localization theory for a dimensional crossover from two-dimensional to one-dimensional behavior is also confirmed. We have reanalyzed the results of some previous experiments on thin films and narrow wires in light of these results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 757
Permanent link to this record
 

 
Author Bardeen, J.; Cooper, L. N.; Schrieffer, J. R.
Title (up) Microscopic theory of superconductivity Type Journal Article
Year 1957 Publication Phys. Rev. Abbreviated Journal Phys. Rev.
Volume 106 Issue Pages 162-164
Keywords BCS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 900
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N.
Title (up) Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
Year 2018 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 97 Issue 18 Pages 184512 (1 to 13)
Keywords WSi films, diffusion constant, SSPD, SNSPD
Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1305
Permanent link to this record