|   | 
Details
   web
Records
Author Usadel, Klaus D.
Title (down) Generalized diffusion equation for superconducting alloys Type Journal Article
Year 1970 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 25 Issue 8 Pages 507
Keywords
Abstract Eilenberger's transportlike equations for a superconductor of type II can be simplified very much in the dirty limit. In this limit a diffusionlike equation is derived which is the generalization of the de Gennes-Maki theory for dirty superconductors to arbitrary values of the order parameter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 920
Permanent link to this record
 

 
Author Vercruyssen, N.; Verhagen, T. G. A.; Flokstra, M. G.; Pekola, J. P.; Klapwijk, T. M.
Title (down) Evanescent states and nonequilibrium in driven superconducting nanowires Type Journal Article
Year 2012 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 85 Issue Pages 224503(1-10)
Keywords Al HEB, Al superconducting nanowire, global state, bimodal state, quasiclassical kinetic equations, Usadel equation
Abstract We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal superconducting states. The different states are identified by using two-probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 898
Permanent link to this record
 

 
Author Shah, Jagdeep; Pinczuk, A.; Gossard, A. C.; Wiegmann, W.
Title (down) Energy-loss rates for hot electrons and holes in GaAs quantum wells Type Journal Article
Year 1985 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 54 Issue Pages 2045-2048
Keywords 2DEG, GaAs/AlGaAs, heat flow, electron-phonon, hole-phonon, carrier-phonon, interactions
Abstract We report the first direct determination of carrier-energy-loss rates in a semiconductor. These measurements provide fundamental insight into carrier-phonon interactions in semiconductors. Unexpectedly large differences are found in the energy-loss rates for electrons and holes in GaAs/AlGaAs quantum wells. This large difference results from an anomalously low electron-energy-loss rate, which we attribute to the presence of nonequilibrium optical phonons rather than the effects of reduced dimensionality or dynamic screening.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 633
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J.
Title (down) Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Journal Article
Year 2011 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 107 Issue 17 Pages 4
Keywords NbN thin film, energy gap dynamics
Abstract Using time-domain terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, λ=1.1±0.1, which is in excellent agreement with theoretical estimates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 641
Permanent link to this record
 

 
Author Pothier, H.; Guéron, S.; Birge, Norman O.; Esteve, D.; Devoret, M. H.
Title (down) Energy distribution function of quasiparticles in mesoscopic wires Type Journal Article
Year 1997 Publication Phys. Rev. Lett. Abbreviated Journal
Volume 79 Issue 18 Pages 3490-3493
Keywords tunnel probe, metallic nanowire, diffusive wire, diffusive nanowire
Abstract We have measured with a tunnel probe the energy distribution function of Landau quasiparticles in metallic diffusive wires connected to two reservoir electrodes, with an applied bias voltage. The distribution function in the middle of a 1.5-μm-long wire resembles the half sum of the Fermi distributions of the reservoirs. The distribution functions in 5-μm-long wires are more rounded, due to interactions between quasiparticles during the longer diffusion time across the wire. From the scaling of the data with the bias voltage, we find that the scattering rate between two quasiparticles varies as <c9><203a>–2, where <c9><203a> is the energy transferred.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 921
Permanent link to this record