|   | 
Details
   web
Records
Author Kawamura, J.; Tong, C.-Y. E.; Blundell, R.; Papa, D. C.; Hunter, T. R.; Patt, F.; Gol’tsman, G.; Gershenzon, E.
Title (down) Terahertz-frequency waveguide NbN hot-electron bolometer mixer Type Journal Article
Year 2001 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 11 Issue 1 Pages 952-954
Keywords NbN HEB mixers
Abstract We have developed a low-noise waveguide heterodyne receiver for operation near 1 THz using phonon-cooled NbN hot-electron bolometers. The mixer elements are submicron-sized microbridges of 4 nm-thick NbN film fabricated on a quartz substrate. Operating at a bath temperature of 4.2 K, the double-sideband receiver noise temperature is 760 K at 1.02 THz and 1100 K at 1.26 THz. The local oscillator is provided by solid-state sources, and power measured at the source is less than 1 /spl mu/W. The intermediate frequency bandwidth exceeds 2 GHz. The receiver was used to make the first ground-based heterodyne detection of a celestial spectroscopic line above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1546
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Golts'man, G.; Gershenzon, E.; Voronov B.
Title (down) Superconductive NbN hot-electron bolometric mixer performance at 250 GHz Type Conference Article
Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 331-336
Keywords NbN HEB mixers
Abstract Thin film NbN (<40 A) strips are used as waveguide mixer elements. The electron cooling mechanism for the geometry is the electron-phonon interaction. We report a receiver noise temperature of 750 K at 244 GHz, with / IF = 1.5 GHz, Af= 500 MHz, and Tphysical = 4 K. The instantaneous bandwidth for this mixer is 1.6 GHz. The local oscillator (LO) power is 0.5 1.tW with 3 dB-uncertainty. The mixer is linear to 1 dB up to an input power level 6 dB below the LO power. We report the first detection of a molecular line emission using this class of mixer, and that the receiver noise temperature determined from Y-factor measurements reflects the true heterodyne sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 945
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title (down) Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.
Volume 48 Issue 4 Pages 683-689
Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range
Abstract In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO&ap;1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 573
Permanent link to this record
 

 
Author Kawamura, Jonathan; Blundell, Raymond; Tong, C.-Y. Edward; Papa, D. Cosmo; Hunter, Todd R.; Paine, Scot.t. N.; Patt, Ferdinand; Gol'tsman, Gregory; Cherednichenko, Sergei; Voronov, Boris; Gershenzon, Eugene
Title (down) Superconductive hot-electron bolometer mixer receiver for 800 GHz operation Type Miscellaneous
Year 2000 Publication IEEE Trans. Microwave Theory and Techniques Abbreviated Journal IEEE Trans. Microwave Theory and Techniques
Volume 48 Issue 4 Pages 683-689
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Kawamura_superconductivehot-electron Serial 424
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Kawamura, Jonathan; Todd, R. Hunter; Papa, D. Cosmo; Blundell, Raymond.; Smith, Michael; Patt, Ferdinand; Gol'tsman, Gregory; Gershenzon, Eugene
Title (down) Successful operation of a 1 THz NbN hot-electron bolometer receiver Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 49-59
Keywords NbN HEB mixers, applications
Abstract A phonon-cooled NbN superconductive hot-electron bolometer receiver covering the frequency range 0.8-1.04 THz has successfully been used for astronomical observation at the Sub-Millimeter Telescope Observatory on Mount Graham, Arizona. This waveguide heterodyne receiver is a modified version of our fixed-tuned 800 GHz HEB receiver to allow for operation beyond 1 THz. The measured noise temperature of this receiver is about 1250 K at 0.81 THz, 560 K at 0.84 THz, and 1600 K at 1.035 THz. It has a 1 GHz wide IF bandwidth, centered at 1.8 GHz. This receiver has recently been used to detect the CO (9-8) molecular line emission at 1.037 THz in the Orion nebula. This is the first time a ground-based heterodyne receiver has been used to detect a celestial source above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 303
Permanent link to this record