toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bulaevskii, L. N.; Graf, M. J.; Batista, C. D.; Kogan, V. G. openurl 
  Title Vortex-induced dissipation in narrow current-biased thin-film superconducting strips Type Journal Article
  Year (down) 2011 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 83 Issue 14 Pages 9  
  Keywords  
  Abstract A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length ξ and of width w much narrower than the Pearl length Λâ‰<ab>wâ‰<ab>ξ. At high bias currents I*<I<Ic the heat released by the crossing of a single vortex suffices to create a belt-like normal-state region across the strip, resulting in a detectable voltage pulse. Here Ic is the critical current at which the energy barrier vanishes for a single vortex crossing. The belt forms along the vortex path and causes a transition of the entire strip into the normal state. We estimate I* to be roughly Ic/3. Furthermore, we argue that such “hot” vortex crossings are the origin of dark counts in photon detectors, which operate in the regime of metastable superconductivity at currents between I* and Ic. We estimate the rate of vortex crossings and compare it with recent experimental data for dark counts. For currents below I*, that is, in the stable superconducting but resistive regime, we estimate the amplitude and duration of voltage pulses induced by a single vortex crossing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 688  
Permanent link to this record
 

 
Author Kerman, Andrew J.; Yang, Joel K. W.; Molnar, Richard J.; Dauler, Eric A.; Berggren, Karl K. openurl 
  Title Electrothermal feedback in superconducting nanowire single-photon detectors Type Journal Article
  Year (down) 2009 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 79 Issue 10 Pages 4  
  Keywords SNSPD  
  Abstract We investigate the role of electrothermal feedback in the operation of superconducting nanowire single-photon detectors (SNSPDs). It is found that the desired mode of operation for SNSPDs is only achieved if this feedback is unstable, which happens naturally through the slow electrical response associated with their relatively large kinetic inductance. If this response is sped up in an effort to increase the device count rate, the electrothermal feedback becomes stable and results in an effect known as latching, where the device is locked in a resistive state and can no longer detect photons. We present a set of experiments which elucidate this effect and a simple model which quantitatively explains the results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 680  
Permanent link to this record
 

 
Author Minaeva, Olga; Bonato, Cristian; Saleh, Bahaa E. A.; Simon, David S.; Sergienko, Alexander V. openurl 
  Title Odd- and even-order dispersion cancellation in quantum interferometry Type Journal Article
  Year (down) 2009 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 102 Issue 10 Pages 4  
  Keywords  
  Abstract We describe a novel effect involving odd-order dispersion cancellation. We demonstrate that odd- and even-order dispersion cancellation may be obtained in different regions of a single quantum interferogram using frequency-anticorrelated entangled photons and a new type of quantum interferometer. This offers new opportunities for quantum communication and metrology in dispersive media.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 699  
Permanent link to this record
 

 
Author Shah, Nayana; Pekker, David; Goldbart, Paul M. doi  openurl
  Title Inherent stochasticity of superconductor-resistor switching behavior in nanowires Type Journal Article
  Year (down) 2008 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 101 Issue Pages 207001(1 to 4)  
  Keywords superconducting nanowires, phase-slip, self-heating effect, temperature profile  
  Abstract We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time using the master-equation formalism, and hence obtain the distribution of switching currents. We find that as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that although several phase-slip events are generally necessary to induce switching, there is an experimentally accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to induce switching, via the local heating it causes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 919  
Permanent link to this record
 

 
Author Novotny, Lukas openurl 
  Title Effective wavelength scaling for optical antennas Type Journal Article
  Year (down) 2007 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 98 Issue 26 Pages 266802(1-4)  
  Keywords optical antennas  
  Abstract In antenna theory, antenna parameters are directly related to the wavelength λ of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing λ by a linearly scaled effective wavelength λeff=n1+n2λ/λp, with λp being the plasma wavelength and n1, n2 being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii Râ‰<aa>λ. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 749  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: