|   | 
Details
   web
Records
Author (down) Terai, Hirotaka; Miki, Shigehito; Yamashita, Taro; Makise, Kazumasa; Wang, Zhen
Title Demonstration of single-flux-quantum readout operation for superconducting single-photon detectors Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 97 Issue 11 Pages 3
Keywords SSPD
Abstract A readout circuit using superconducting single-flux-quantum (SFQ) circuits has been developed to realize an independently addressable array of superconducting single-photon detectors (SSPDs). We tested the SFQ readout circuits by connecting with SSPDs. The error rates of readout circuits were below 10–5 for input signal amplitude of greater than 18.2 μA. Detection efficiencies (DEs) for single-photon incidents were measured both with and without the connection of a readout circuit. The observed DEs traced almost the same curves regardless of the connection of the readout circuit, except that the SSPD is likely to latch by connecting the readout circuit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 654
Permanent link to this record
 

 
Author (down) Tarkhov, M.; Claudon, J.; Poizat, J. Ph.; Korneev, A.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Semenov, A. V.; Gol'tsman, G.
Title Ultrafast reset time of superconducting single photon detectors Type Journal Article
Year 2008 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue 24 Pages 241112 (1 to 3)
Keywords SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 429
Permanent link to this record
 

 
Author (down) Tanner, M. G.; Natarajan, C. M.; Pottapenjara, V. K.; O'Connor, J. A.; Warburton, R. J.; Hadfield, R. H.; Baek, B.; Nam, S.; Dorenbos, S. N.; Bermúdez Ureña, E.; Zijlstra, T.; Klapwijk, T. M.; Zwiller, V.
Title Enhanced telecom wavelength single-photon detection with NbTiN superconducting nanowires on oxidized silicon Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 96 Issue 22 Pages 3
Keywords SNSPD
Abstract Superconducting nanowire single-photon detectors (SNSPDs) have emerged as a highly promising infrared single-photon detector technology. Next-generation devices are being developed with enhanced detection efficiency (DE) at key technological wavelengths via the use of optical cavities. Furthermore, new materials and substrates are being explored for improved fabrication versatility, higher DE, and lower dark counts. We report on the practical performance of packaged NbTiN SNSPDs fabricated on oxidized silicon substrates in the wavelength range from 830 to 1700 nm. We exploit constructive interference from the SiO2/Si interface in order to achieve enhanced front-side fiber-coupled DE of 23.2 % at 1310 nm, at 1 kHz dark count rate, with 60 ps full width half maximum timing jitter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 655
Permanent link to this record
 

 
Author (down) Słysz, W.; Węgrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Bohi, P.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.; Pearlman, A.; Cross, A.; Komissarov, I.; Verevkin, A.; Sobolewski, R.
Title Fiber-coupled single-photon detectors based on NbN superconducting nanostructures for practical quantum cryptography and photon-correlation studies Type Journal Article
Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 88 Issue 26 Pages 261113 (1 to 3)
Keywords SSPD, SNSPD
Abstract We have fabricated and tested a two-channel single-photon detector system based on two fiber-coupled superconducting single-photon detectors (SSPDs). Our best device reached the system quantum efficiency of 0.3% in the 1540-nm telecommunication wavelength with a fiber-to-detector coupling factor of about 30%. The photoresponse consisted of 2.5-ns-wide voltage pulses with a rise time of 250ps and timing jitter below 40ps. The overall system response time, measured as a second-order, photon cross-correlation function, was below 400ps. Our SSPDs operate at 4.2K inside a liquid-helium Dewar, but their optical fiber inputs and electrical outputs are at room temperature. Our two-channel detector system should find applications in practical quantum cryptography and in antibunching-type quantum correlation measurements.

The authors would like to thank Dr. Marc Currie for his assistance in early time-resolved photoresponse measurements and Professor Atac Imamoglu for his support. This work was supported by the Polish Ministry of Science under Project No. 3 T11B 052 26 (Warsaw), RFBR 03-02-17697 and INTAS 03-51-4145 grants (Moscow), CRDF Grant No. RE2-2531-MO-03 (Moscow), RE2-2529-MO-03 (Moscow and Rochester), and US AFOSR FA9550-04-1-0123 (Rochester). Additional funding was provided by the grants from the MIT Lincoln Laboratory and BBN Technologies Corp.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1449
Permanent link to this record
 

 
Author (down) Swetz, D. S.; Bennett, D. A.; Irwin, K. D.; Schmidt, D. R.; Ullom, J. N.
Title Current distribution and transition width in superconducting transition-edge sensors Type Journal Article
Year 2012 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 101 Issue Pages 242603
Keywords
Abstract Present models of the superconducting-to-normal transition in transition-edge sensors (TESs) do not describe the current distribution within a biased TES. This distribution is complicated by normal-metal features that are integral to TES design. We present a model with one free parameter that describes the evolution of the current distribution with bias. To probe the current distribution experimentally, we fabricated TES devices with different current return geometries. Devices where the current return geometry mirrors current flow within the device have sharper transitions, thus allowing for a direct test of the current-flow model.Measurements from these devices show that current meanders through a TES low in the resistivetransition but flows across the normal-metal features by 40% of the normal-state resistance. Comparison of transition sharpness between device designs reveals that self-induced magnetic fields play an important role in determining the width of the superconducting transition.
Address TES, current distribution
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 930
Permanent link to this record