|   | 
Details
   web
Records
Author Sprengers, J. P.; Gaggero, A.; Sahin, D.; Jahanmirinejad, S.; Frucci, G.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore A.
Title Waveguide superconducting single-photon detectors for integrated quantum photonic circuits Type Journal Article
Year 2011 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 99 Issue 18 Pages 181110(1-3)
Keywords optical waveguides, waveguide SSPD
Abstract The monolithic integration of single-photon sources, passive optical circuits, and single-photon detectors enables complex and scalable quantum photonic integrated circuits, for application in linear-optics quantum computing and quantum communications. Here, we demonstrate a key component of such a circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (~0%) at telecom wavelengths, high timing accuracy (~0 ps), and response time in the ns range and are fully compatible with the integration of single-photon sources, passive networks, and modulators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 847
Permanent link to this record
 

 
Author Inderbitzin, K.; Engel, A.; Schilling, A.; Il'in, K.; Siegel, M.
Title An ultra-fast superconducting Nb nanowire single-photon detector for soft x-rays Type Journal Article
Year 2012 Publication Abbreviated Journal Appl. Phys. Lett.
Volume 101 Issue Pages
Keywords SSPD, SNSPD, x-ray, Nb
Abstract Although superconducting nanowire single-photon detectors (SNSPDs) are well studied regarding the

detection of infrared/optical photons and keV-molecules, no studies on continuous x-ray photon

counting by thick-film detectors have been reported so far. We fabricated a 100 nm thick niobium

x-ray SNSPD (an X-SNSPD) and studied its detection capability of photons with keV-energies in

continuous mode. The detector is capable to detect photons even at reduced bias currents of 0.4%,

which is in sharp contrast to optical thin-film SNSPDs. No dark counts were recorded in extended

measurement periods. Strikingly, the signal amplitude distribution depends significantly on the photon

energy spectrum.VC
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ seleznev @ Serial 878
Permanent link to this record
 

 
Author Kataoka, T; Kajikawa, K.; Kitagawa, J.; Kadoya, Y; Takemura, Y.
Title Improved sensitivity of terahertz detection by GaAs photoconductive antennas excited at 1560 nm Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 97 Issue Pages 201110 (1-3)
Keywords photoconductive antenna (PCA)
Abstract The terahertz detection by photoconductive antennas (PCAs) based on low-temperature grown (LTG) GaAs with 1.5 μm pulse excitation was revisited. We found that the detection efficiency can be improved by a factor of 10 (20 dB) by reducing the excitation spot size and the gap length of the PCA, maintaining the low noise feature of the PCA on LTG GaAs. As a result, the signal-to-noise ratio higher than 50 dB was obtained at a reasonable incident power of 9.5 mW, suggesting that the scheme is promising for the detection of terahertz waves in practical time domain systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 904
Permanent link to this record
 

 
Author Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 86 Issue Pages 244104 (1 to 3)
Keywords HEB, QCL
Abstract We report the first demonstration of an all solid-stateheterodyne receiver that can be used for high-resolution spectroscopy above 2THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8THz as local oscillator. We measure a double sideband receiver noise temperature of 1400K at 2.8THz and 4.2K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 905
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2814-2816
Keywords NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record