toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Henrich, D.; Dorner,S.; Hofherr, M.; Il'in, K.; Semenov, A.; Heintze, E.; Scheffler, M.; Dressel, M.; Siegel, M. openurl 
  Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content Type Journal Article
  Year 2012 Publication (up) Abbreviated Journal J. Appl. Phys.  
  Volume 112 Issue Pages  
  Keywords SSPD, SNSPD, magnetron sputtering, spectrum, NbN film, nitrogen concentration  
  Abstract The spectral detection efficiency and the dark count rate of superconducting nanowire

single-photon detectors (SNSPD) have been studied systematically on detectors made from thin

NbN films with different chemical compositions. Reduction of the nitrogen content in the 4 nm

thick NbN films results in a decrease of the dark count rates more than two orders of magnitude

and in a red shift of the cut-off wavelength of the hot-spot SNSPD response. The observed

phenomena are explained by an improvement of uniformity of NbN films that has been confirmed

by a decrease of resistivity and an increase of the ratio of the measured critical current to the

depairing current. The latter factor is considered as the most crucial for both the cut-off

wavelength and the dark count rates of SNSPD. Based on our results we propose a set of criteria

for material properties to optimize SNSPD in the infrared spectral region. VC 2012 American

Institute of Physics. [http://dx.doi.org/10.1063/1.4757625]
 
  Address  
  Corporate Author D. Henrich, S. Dorner, M. Hofherr, K. Il'in, A. Semenov, E. Heintze, M. Scheffler, M. Dressel, M. Siegel Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title Broadening of hot-spot response spectrum of superconducting NbN nanowire single-photon detector with reduced nitrogen content  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ seleznev @ Serial 877  
Permanent link to this record
 

 
Author Skocpol', W.J.; Beasley, M.R.; Tinkham M openurl 
  Title Self-heating hotspots in superconducting thin film microbridges Type Journal Article
  Year 1974 Publication (up) Abbreviated Journal J. Appl. Phys.  
  Volume 45 Issue Pages 4054-4066  
  Keywords  
  Abstract Heating effects in both long and short superconducting thin-<ef><ac><81>lm rnicrobridges are described and analyzed. Except near T(c), at low voltages where superconducting quantum processes occur, all of our experimental dc I-V characteristics can be satisfactorily understood on the basis of a simple model of a localized normal hotspot maintained by Joule heating. We consider approximations appropriate to the cases of long bridges, short bridges, and bridges coupled to microwave radiation. The analysis leads to analytic expressions for the I-V characteristics which agree well with the experimental data. We show that the formation of such a hotspot is the dominant cause of the hysteresis observed in the I-V characteristics at low temperatures. We also show that the growth of such a hotspot imposes a high-voltage limit on the ac Josephson effect in these devices, and we compare the importance of such heating effects at high voltages in various types of superconducting weak links.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 961  
Permanent link to this record
 

 
Author Semenov, A.; Engel, A.; Il'in, K.; Gol'tsman, G.; Siegel, M.; Hübers, H.-W. url  doi
openurl 
  Title Ultimate performance of a superconducting quantum detector Type Journal Article
  Year 2003 Publication (up) Eur. Phys. J. Appl. Phys. Abbreviated Journal Eur. Phys. J. Appl. Phys.  
  Volume 21 Issue 3 Pages 171-178  
  Keywords NbN SSPD, SNSPD  
  Abstract We analyze the ultimate performance of a superconducting quantum detector in order to meet requirements for applications in near-infrared astronomy and X-ray spectroscopy. The detector exploits a combined detection mechanism, in which avalanche quasiparticle multiplication and the supercurrent jointly produce a voltage response to a single absorbed photon via successive formation of a photon-induced and a current-induced normal hotspot in a narrow superconducting strip. The response time of the detector should increase with the photon energy providing energy resolution. Depending on the superconducting material and operation conditions, the cut-off wavelength for the single-photon detection regime varies from infrared waves to visible light. We simulated the performance of the background-limited infrared direct detector and X-ray photon counter utilizing the above mechanism. Low dark count rate and intrinsic low-frequency cut-off allow for realizing a background limited noise equivalent power of 10−20 W Hz−1/2 for a far-infrared direct detector exposed to 4-K background radiation. At low temperatures, the intrinsic response time of the counter is rather determined by diffusion of nonequilibrium electrons than by the rate of energy transfer to phonons. Therefore, thermal fluctuations do not hamper energy resolution of the X-ray photon counter that should be better than 10−3 for 6-keV photons. Comparison of new data obtained with a Nb based detector and previously reported results on NbN quantum detectors support our estimates of ultimate detector performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1286-0042 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 534  
Permanent link to this record
 

 
Author Gousev, Yu. P.; Gol'tsman, G. N.; Semenov, A. D.; Gershenzon, E. M.; Nebosis, R. S.; Heusinger, M. A.; Renk, K. F. doi  openurl
  Title Broadband ultrafast superconducting NbN detector for electromagnetic radiation Type Journal Article
  Year 1994 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 75 Issue 7 Pages 3695-3697  
  Keywords NbN HEB  
  Abstract An ultrafast detector that is sensitive to radiation in a broad spectral range from submillimeter waves to visible light is reported. It consists of a structured NbN thin film cooled to a temperature below Tc (∼11 K). Using 20 ps pulses of a GaAs laser, we observed signal pulses with both rise and decay time of about 50 ps. From the analysis of a mixing experiment with submillimeter radiation we estimate an intrinsic response time of the detector of ∼12 ps. The sensitivity was found to be similar for the near‐infrared and submillimeter radiation. Broadband sensitivity and short response time are attributed to a quasiparticle heating effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 252  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication (up) J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages 6758-6767  
  Keywords HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 306  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: