|   | 
Details
   web
Records
Author (up) Mooij, J. E.; Dekker, P.
Title Static properties of two- and three-dimensional superconducting constrictions Type Journal Article
Year 1978 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 33 Issue 5/6 Pages 551-576
Keywords superconducting microbridges, superconducting strip, coherence length
Abstract Calculations have been performed on superconducting constrictions with hyperbolic geometry. Stationary Ginzburg-Landau equations are used, neglecting magneticfields. Emphasis is placed on the difference between two-and three -dimensional constrictions, which is related to the difference between uniform-thickness (UT) and variable-thickness (VT) superconducting microbridges. The width of the constriction w, normalized to the coherence length ξ is indicated by the parameter A (â‰<192> w/2ξ). It is found that small (A < 0.1), three-dimensional constrictions and VT bridges have a sinusoidal current-phase relation, linear temperature dependence of the critical current I c, and an I cR product (Ris the normal state resistance) equal to the Ambegaokar-Baratoff expression for Josephson junctions near T c. Two-dimensional constrictions behave as if they consist of an inner core with junction properties, in series with the films on both sides. The core consists of the region within a coherence length from the center of the structure. This size is temperature dependent. The core shows a sinusoidal current-phase relation and IcR according to Ambegaokar and Baratoff. For the whole constriction neither the phase difference nor R is finite. Two-dimensional constrictions have linear temperature dependence only when they are extremely narrow (A < 0.001). In two-dimensionalbridges the order parameter is depressed cover a distance of approximately the coherence length; in small three-dimensional constrictions this distance is approximately equal to the width. In narrow constrictions (and short microbridges) the current is not homogeneously distributedover the cross section. The effect has been investigated that occurs when in three-dimensional constrictions the width w is not much larger than l 0, the electron mean free path in the basic material. To this purpose a Ginzburg-Landau equation is derived from the Zaitsev boundary conditions which is valid for continuously changing material parameters. The critical current is decreased, but the IcR product remains constant.The results of the calculations are compared with experimental results for superconducting microbridges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 926
Permanent link to this record
 

 
Author (up) Schmid, Albert; Schön, Gerd
Title Linearized kinetic equations and relaxation processes of a superconductor near Tc Type Journal Article
Year 1975 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 20 Issue 1-2 Pages 207-227
Keywords
Abstract Starting from the equation of Gor'kov and Eliashberg in a form introduced by Eilenberger, we derive a set of linearized equations for the deviation from the equilibrium value of the quasiparticle distribution function as well as of the order parameter. These equations resemble the Boltzmann equation and the Ginzburg-Landau equation, respectively, and they form a set of coupled equations. Two different modes can be distinguished, depending on whether the order parameter changes in magnitude or in phase. The equations are solved for the case of a stationary quasiparticle injection into a superconductor and the change in the electrochemical potential of the quasiparticles is calculated. Furthermore, we treat the problem of a current flowing perpendicular to a superconducting-normal interface in which a normal current is converted into a supercurrent, and we calculate the extra resistance of the interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 922
Permanent link to this record