toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B. url  doi
openurl 
  Title Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 3-4 Pages 771-776  
  Keywords (up) NbN SSPD, SNSPD, nanowires  
  Abstract We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1410  
Permanent link to this record
 

 
Author Mooij, J. E.; Dekker, P. doi  openurl
  Title Static properties of two- and three-dimensional superconducting constrictions Type Journal Article
  Year 1978 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 33 Issue 5/6 Pages 551-576  
  Keywords (up) superconducting microbridges, superconducting strip, coherence length  
  Abstract Calculations have been performed on superconducting constrictions with hyperbolic geometry. Stationary Ginzburg-Landau equations are used, neglecting magneticfields. Emphasis is placed on the difference between two-and three -dimensional constrictions, which is related to the difference between uniform-thickness (UT) and variable-thickness (VT) superconducting microbridges. The width of the constriction w, normalized to the coherence length ξ is indicated by the parameter A (â‰<192> w/2ξ). It is found that small (A < 0.1), three-dimensional constrictions and VT bridges have a sinusoidal current-phase relation, linear temperature dependence of the critical current I c, and an I cR product (Ris the normal state resistance) equal to the Ambegaokar-Baratoff expression for Josephson junctions near T c. Two-dimensional constrictions behave as if they consist of an inner core with junction properties, in series with the films on both sides. The core consists of the region within a coherence length from the center of the structure. This size is temperature dependent. The core shows a sinusoidal current-phase relation and IcR according to Ambegaokar and Baratoff. For the whole constriction neither the phase difference nor R is finite. Two-dimensional constrictions have linear temperature dependence only when they are extremely narrow (A < 0.001). In two-dimensionalbridges the order parameter is depressed cover a distance of approximately the coherence length; in small three-dimensional constrictions this distance is approximately equal to the width. In narrow constrictions (and short microbridges) the current is not homogeneously distributedover the cross section. The effect has been investigated that occurs when in three-dimensional constrictions the width w is not much larger than l 0, the electron mean free path in the basic material. To this purpose a Ginzburg-Landau equation is derived from the Zaitsev boundary conditions which is valid for continuously changing material parameters. The critical current is decreased, but the IcR product remains constant.The results of the calculations are compared with experimental results for superconducting microbridges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 926  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: